Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (6): 1547-1554    DOI: 10.11720/wtyht.2023.0018
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
多孔隙度变化倾角裂缝型砂岩铀矿超热中子运移模拟
张雪昂1(), 杨志超2, 李小燕1, 董丽媛1
1.东华理工大学 核科学与工程学院,江西 南昌 330013
2.东华理工大学 地球物理与测控技术学院,江西 南昌 330013
Simulation of epithermal neutron migration in fractured sandstone-hosted uranium deposits with variable porosities and dip angles
ZHANG Xue-Ang1(), YANG Zhi-Chao2, LI Xiao-Yan1, DONG Li-Yuan1
1. School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China
2. School of Geophysics and Measurement-control Technology, East China University of Technology, Nanchang 330013, China
全文: PDF(3384 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

铀矿作为重要的清洁能源一直备受地质勘探领域的关注,然而,其中的裂缝型砂岩铀矿(孔、裂隙型铀矿)因其结构复杂一直是勘查工作的难点。因此,为了对此类型铀矿进行定量分析,有必要对铀矿赋存状态、含量与地质结构(孔、裂隙)参数的响应关系进行研究。通过瞬发中子测井技术和指向概率模拟算法可以对孔、裂缝型砂岩铀矿中的中子运移情况进行模拟,基于理想模型将研究重点集中于裂缝结构对中子测井结果的影响,包括:裂隙孔隙度对超热中子运移的影响作用随着孔隙度的升高而显著提高,同时使测井响应敏感度大幅提升;近似垂直裂隙环境下,超热中子聚集峰呈现多点分布状态;高裂缝倾角环境对中子能量和时间谱峰值的衰减作用最为严重,并且中子时间谱峰值存在随孔隙度增大向低裂缝倾角度区间移动的现象;不同裂缝倾角环境下,孔隙度与超热中子计数比存在一定的特征线性关系,可以辅助修正特定角度裂隙环境中的铀含量范围。以上结论可以为裂缝砂岩铀矿、复杂环境铀矿勘探工作提供理论参考依据并提高铀矿定量准确性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张雪昂
杨志超
李小燕
董丽媛
关键词 孔、裂隙结构中子测井铀矿数值模拟多倾角裂缝    
Abstract

Uranium ores, as a significant clean energy source, have been highly anticipated in the field of geological exploration. However, fractured sandstone-hosted uranium deposits (pore-fissure type uranium deposits) face challenges in exploration because of their complex structures. Therefore, to quantify such uranium deposits, it is necessary to investigate the response relationships between the occurrence state and content of uranium and the parameters of geological structures (pores and fissures). This study simulated the neutron migration in the pore-fissure type sandstone-hosted uranium deposits using the prompt neutron log technology and the directive probability simulation algorithm. Through an ideal model, this study focused on the effects of fracture structures on neutron logs. The results are as follows: (1) The effects of fissure porosity on epithermal neutron migration intensified significantly with an increase in porosity, accompanied by substantially enhanced log response sensitivity; (2) The epithermal neutron accumulation peaks exhibit a multi-point distribution in a nearly vertical fissure environment; (3) The fracture environment with high dip angles manifested the most significant attenuation effect on the neutron energy and time spectrum peaks, and the neutron time spectrum peaks tended to move to the low-dip-angle interval with an increase in porosity; (4) In the fracture environment with variable dip angles, there was a linear relationship between the porosity and the epithermal neutron count ratio, which can assist in correcting the uranium content range in fracture environments at specific angles. The above results can provide a theoretical reference for the exploration of fractured sandstone-hosted uranium deposits and other uranium deposits in a complex environment and improve the quantitative accuracy of uranium deposits.

Key wordspore-fissure structure    neutron log    uranium deposit    numerical simulation    fracture with variable dip angles
收稿日期: 2023-01-30      修回日期: 2023-07-11      出版日期: 2023-12-20
:  P631  
基金资助:国家自然科学基金项目(41761090);江西省教育厅基金(GJJ180370)
作者简介: 张雪昂(1986-),女,副教授,研究方向为非常规储层放射性地质勘探。Email:625014321@qq.com
引用本文:   
张雪昂, 杨志超, 李小燕, 董丽媛. 多孔隙度变化倾角裂缝型砂岩铀矿超热中子运移模拟[J]. 物探与化探, 2023, 47(6): 1547-1554.
ZHANG Xue-Ang, YANG Zhi-Chao, LI Xiao-Yan, DONG Li-Yuan. Simulation of epithermal neutron migration in fractured sandstone-hosted uranium deposits with variable porosities and dip angles. Geophysical and Geochemical Exploration, 2023, 47(6): 1547-1554.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.0018      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I6/1547
Fig.1  井孔环境及裂缝倾角示意
序号 成分 含量占比/%
1 SiO2 54.963
2 CaO 16.711
3 Al2O3 9.434
4 CaCO3 8.335
5 K2O 5.438
6 TiO2 2.264
7 FeO 1.640
8 MgO 1.215
Table 1  井孔环境主要物质成分
角度/(°) 占比/%
70°~90° 12.3
40°~70° 44.7
0°~40° 43.0
Table 2  实验采样环境中的裂缝倾角
元素 含量/10-6
La 24.36
Ce 48.13
Pr 6.25
Nd 18.89
Sm 4.04
Eu 0.69
Gd 3.22
Tb 0.96
Dy 3.72
Ho 0.51
Er 1.92
Tm 0.23
Yb 1.09
Lu 0.47
Table 3  井孔环境稀土元素
Fig.2  不同孔隙度条件下的变化裂缝倾角砂岩铀矿超热中子密度运移情况
Fig.3  不同倾角、孔隙度裂隙环境下超热中子运移敏感度
Fig.4  不同倾角、孔隙度裂隙环境下中子能量峰值谱
Fig.5  不同倾角、孔隙度裂隙环境下超热中子时间计数峰值谱
Fig.6  裂隙孔隙度与超热中子计数比值关系
Fig.7  超热中子密度运移情况
[1] 李鹏举, 李勇勇, 徐茂河, 等. 地层水矿化度对补偿中子测井影响的自动校正方法研究[J]. 物探与化探, 2019, 43(4):815-821.
[1] Li P J, Li Y Y, Xu M H, et al. A study of automatic correction method for the influence of formation water salinity on compensating neutron logging[J]. Geophysical and Geochemical Exploration, 2019, 43(4):815-821.
[2] Wood D A. Gamma-ray log derivative and volatility attributes assist facies characterization in clastic sedimentary sequences for formulaic and machine learning analysis[J]. Advances in Geo-Energy Research, 2022, 6(1):69-85.
doi: 10.46690/ager
[3] 张雪昂, 杨志超, 魏雄. 水层多角度裂缝介质中子测井响应数值模拟[J]. 物探与化探, 2018, 42(6):1221-1227.
[3] Zhang X A, Yang Z C, Wei X. Water layer neutron logging in multi-angle crack environment[J]. Geophysical and Geochemical Exploration, 2018, 42(6):1221-1227.
[4] Sun Q F, Li N, Duan Y X, et al. Logging-while-drilling formation dip interpretation based on long short-term memory[J]. Petroleum Exploration and Development, 2021, 48(4):978-986.
doi: 10.1016/S1876-3804(21)60082-4
[5] Gama J, Schwark L. Lithofacies of early Jurassic successions derived from spectral gamma ray logging in the Mandawa Basin, SE Tanzania[J]. Arabian Journal of Geosciences, 2022, 15(16):1373.
doi: 10.1007/s12517-022-10622-4
[6] Han R Y, Wang Z W. Monte Carlo simulation of scintillation crystal detector for formation element logging[J]. Global Geology, 2019, 22(2):128-132.
[7] 张雪昂, 杨志超, 魏雄. 裂缝型铀矿环境中子测井数值模拟[J]. 东华理工大学学报:自然科学版, 2019, 42(1):68-73.
[7] Zhang X A, Yang Z C, Wei X. Numerical simulation of neutron logging in fracture uranium environment[J]. Journal of East China University of Technology:Natural Science, 2019, 42(1):68-73.
[8] Kang D J, Xie Y F, Lu J G, et al. Assessment of natural gas hydrate reservoirs at Site GMGS3-W19 in the Shenhu area, South China Sea based on various well logs[J]. China Geology, 2022, 5(3):383-392.
[9] 宋非, 刘志锋, 罗建彪, 等. 铀裂变瞬发中子测井套管影响MC模拟修正[J]. 核电子学与探测技术, 2020, 40(6):927-931.
[9] Song F, Liu Z F, Luo J B, et al. Casing influences in uranium fission prompt neutron logging based on MC simulation correction[J]. Nuclear Electronics and Detection Technology, 2020, 40(6):927-931.
[10] 赖毅辉, 王海涛, 陈锐. 瞬发中子测井的铀矿井眼实时校正方法研究[J]. 核技术, 2021, 44(6):55-59.
[10] Lai Y H, Wang H T, Chen R. Real-time correction method of uranium mine caliper based on prompt neutron well logging[J]. Nuclear Techniques, 2021, 44(6):55-59.
[11] Zhang L, Yu H W, Li Y, et al. Improved formation density measurement using controllable D-D neutron source and its lithological correction for porosity prediction[J]. Nuclear Science and Techniques, 2022, 33(1):26-36.
doi: 10.1007/s41365-022-01011-3
[12] Zhang F, Chen S Q, Liu T, et al. A quantitative calculation method for fracture density using the neutron self-shielding modification and neutron-induced gamma logging[J]. Geophysics:Journal of the Society of Exploration Geophysicists, 2022, 87(3):D91-D100.
[13] 肖才锦, 张贵英, 袁国军, 等. 缓发中子标准衰减曲线法用于铀的定量研究[J]. 核技术, 2015, 38(12):24-28.
[13] Xiao C J, Zhang G Y, Yuan G J, et al. Study on standard decay curve method in uranium determination by delayed neutron counting[J]. Nuclear Techniques, 2015, 38(12):24-28.
[14] Darmovzalova J, Boghi A, Otten W, et al. Uranium diffusion and time-dependent adsorption-desorption in soil: A model and experimental testing of the model[J]. European Journal of Soil Science, 2020, 71(2):215-225.
doi: 10.1111/ejss.v71.2
[15] 李坡, 杨立志, 赵利信, 等. 非均匀地应力条件下新疆某铀矿地浸井套管稳定性研究[J]. 铀矿冶, 2022, 41(4):368-376.
[15] Li P, Yang L Z, Zhao L X, et al. Study on casing stability under non-uniform ground stress for in-situ leaching well of a uranium deposit in Xinjiang[J]. Uranium Mining and Metallurgy, 2022, 41(4):368-376.
[16] Malik P P, Maity J. Synthesis and leaching behaviour of borosilicate glasses containing uranium as radioactive waste[J]. Journal of the Indian Chemical Society, 2020, 97(12c):2909-2913.
[17] Buckner M Q, Wu C Y, Henderson R A, et al. Measurement of the 242mAm neutron-induced reaction cross sections[J]. Physical Review C, 2017, 95(2):024610.
doi: 10.1103/PhysRevC.95.024610
[18] Zhang S X, Zou C C, Peng C, et al. Abnormally high natural radioactivity zones in the main borehole of the continental scientific drilling project of cretaceous songliao basin:Geophysical log responses and genesis analysis[J]. Chinese Journal of Geophysics, 2018, 61(11):4712-4728.
[19] 梁永顺, 管少斌, 李峰林. 瞬发裂变中子测井与γ测井在砂岩型铀矿钻孔的对比[J]. 宇航计测技术, 2016, 36(3):68-73.
[19] Liang Y S, Guang S B, Feng L L I. Comparisons of prompt fission neutron logging and gamma logging applied in sandstone-type uranium ore drill holes[J]. Journal of Astronautic Metrology and Measurement, 2016, 36(3):68-73.
[20] 谢新宇, 许文军, 何昌鸿. 瞬发裂变中子测井中水层厚度影响的研究[J]. 西部探矿工程, 2019, 31(4):121-122.
[20] Xie X Y, Xu W J, He C H. Study of the effect of water layer thickness in transient fission neutron logging[J]. West China Exploration Engineering, 2019, 31(4):121-122.
[21] Wang D, Zhang C F, Li B J, et al. Simulation of suppression of gamma sensitivity of fission electron-collection' neutron detector[J]. Chinese Physics Letters, 2016, 33(5):30-33.
[22] 张龙, 陈振宇, 李胜荣, 等. 粤北棉花坑(302)铀矿床围岩蚀变分带的铀矿物研究[J]. 岩石学报, 2018, 34(9):2657-2670.
[22] Zhang L, Chen Z Y, Li S R, et al. Characteristics of uranium minerals in wall-rock alteration zones of the Mianhuakeng (No.302) uranium deposit, northern Guangdong, South China[J]. Acta Petrologica Sinica, 2018, 34(9):2657-2670.
[23] 李英宾, 李毅, 魏滨, 等. CSAMT和浅层地震在松辽盆地西南部铀矿勘查中的应用[J]. 地质与勘探, 2019, 55(6):1442-1451.
[23] Li Y B, Li Y, Wei B, et al. Application of CSAMT and shallow seismic reflection to uranium exploration in south western Songliao Basin[J]. Geology and Exploration, 2019, 55(6):1442-1451.
[24] 郑欣, 汪永宏. 我国沉积盆地中油气藏与砂岩型铀矿“同盆共存”关系研究[J]. 地下水, 2019, 41(5):107-109,176.
[24] Zheng X, Wang Y H. The relationship study between oil and gas reservoirs and sandstone-type uranium deposits in the same sedimentary basin in China[J]. Ground Water, 2019, 41(5):107-109,176.
[25] 喻翔, 汪硕, 胡英才, 等. 二连盆地北部玄武岩覆盖区电性结构与铀成矿环境研究[J]. 物探与化探, 2022, 46(5):1157-1166.
[25] Yu X, Wang S, Hu Y C, et al. Study on electrical structure and uranium metallogenic environment of basalt-covered area in the northern Erlian Basin[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1157-1166.
[26] Zhang X A, Yang Z C, Tang B, et al. Distinguishing oil and water layers in a cracked porous medium using pulsed neutron logging data based on Hudson's crack theory[J]. Geophysical Journal International, 2018, 213(3):1345-1359.
doi: 10.1093/gji/ggy065
[27] Zhang X A, Yang Z C, Li X Y. Simulation of multi-angle fractured uranium deposits by neutron logging[J]. Geophysical Journal International, 2020, 223(3):2027-2037.
doi: 10.1093/gji/ggaa436
[1] 王永飞, 董之凯, 吕文祥, 李宝新, 马冰. 四川省510铀矿床中铀及伴生元素的分带特征[J]. 物探与化探, 2023, 47(4): 881-891.
[2] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[3] 张洋洋, 陈岳龙, 李大鹏, 康欢, 房明亮, 徐云亮. 冀北隐伏火山热液型铀矿地表地球化学异常[J]. 物探与化探, 2023, 47(2): 300-308.
[4] 朱卫平. 长江铀矿田花岗岩与铀成矿年代学研究进展[J]. 物探与化探, 2022, 46(6): 1327-1337.
[5] 银涌兵, 李海英, 卢腾, 韩飘平, 孔德旭, 万环环, 庞文静, 吴志春. 相山铀矿田热结构特征与成矿关系——以邹家山矿床为例[J]. 物探与化探, 2022, 46(6): 1388-1395.
[6] 喻翔, 汪硕, 胡英才, 段书新. 二连盆地北部玄武岩覆盖区电性结构与铀成矿环境研究[J]. 物探与化探, 2022, 46(5): 1157-1166.
[7] 肖世鹏, 熊高君, 袁梦雨, 毛明秋, 王胜艺, 韦增涛. 黏声波高阶傅里叶有限差分法参数优化成像[J]. 物探与化探, 2022, 46(5): 1207-1213.
[8] 柴伦炜. 井间超高密度电法探测基桩的模拟及应用[J]. 物探与化探, 2022, 46(5): 1283-1288.
[9] 伍显红, 许第桥, 李茂. 宽频大地电磁法在二连盆地铀矿资源评价中的试验应用[J]. 物探与化探, 2022, 46(4): 830-837.
[10] 苏林帅, 蔡明, 郑占树, 徐宝宝, 罗居森, 胡燕杰, 张荆宇. 井眼扩径对水平井声波测井响应影响的数值模拟[J]. 物探与化探, 2022, 46(2): 467-473.
[11] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[12] 唐瑞, 欧阳菲, 罗先熔, 郑超杰, 汤国栋, 刘攀峰, 蔡叶蕾, 杨笑笑. 相山矿田游坊地区地电提取找矿预测[J]. 物探与化探, 2021, 45(6): 1425-1438.
[13] 封志兵, 聂冰锋, 聂逢君, 江丽, 夏菲, 李满根, 严兆彬, 何剑锋, 程若丹. 地球物理方法在砂岩型铀矿勘查中的应用进展[J]. 物探与化探, 2021, 45(5): 1179-1188.
[14] 肖妍姗, 周正华, 苏杰, 魏鑫. 地表水平正反敲击激振下孔法剪切波速测试理论依据讨论[J]. 物探与化探, 2021, 45(5): 1288-1294.
[15] 李英宾. 可控源音频大地电磁测量对腾格尔坳陷东北缘下白垩统赛汉组砂体的识别及其地质意义[J]. 物探与化探, 2021, 45(3): 616-623.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com