Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (5): 1066-1072    DOI: 10.11720/wtyht.2020.0195
  广域电磁勘探技术应用专栏 本期目录 | 过刊浏览 | 高级检索 |
广域电磁法三维有限单元法模拟研究
武建平(), 张超(), 陈剑平, 杨玺, 裴运军, 周庆东
中国南方电网广东电网有限责任公司江门供电局,广东 江门 529000
Three dimensional finite element simulation of wide field electromagnetic method
WU Jian-Ping(), ZHANG Chao(), CHEN Jian-Ping, YANG Xi, PEI Yun-Jun, ZHOU Qing-Dong
Jiangmen Power Supply Plant,China Southern Power Grid Limited Liability Company,Jiangmen 529000,China
全文: PDF(3027 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

本文以Maxwell方程组为理论基础,从矢量位和标量位方程出发,采用有限单元法对广域电磁法进行了三维数值模拟研究。在模型算例中,通过具有解析解的均匀半空间模型对本文算法的正确性进行了验证,在此基础上,设计了两种不同深度的低阻异常体模型,对广域电磁法的探测深度进行了模拟研究,数值计算结果表明:广域电磁法不受场源中近区的影响,能够在全区范围内进行观测;此外,还具有探测深度大的特点,为深地资源探测提供了理论与方法支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武建平
张超
陈剑平
杨玺
裴运军
周庆东
关键词 广域电磁法数值模拟有限单元法探测深度    
Abstract

Based on the Maxwell equations,the authors introduced the vector potential and scalar potential coupling equations,and used the finite element method to study the three-dimensional numerical simulation of WFEM.In a synthetic test,the correctness of this algorithm was verified by a uniform half-space model with analytical solutions.Then the detection depth of the WFEM was simulated using the anomalous bodies at two different depths.The numerical simulation results show that the WFEM don't affected by the near region of the field source and has the characteristics of large depth,it can provide theoretical and methodological support for deep earth resource exploration.

Key wordswide field electromagnetic method    numerical simulation    finite element method    detection depth
收稿日期: 2020-04-22      出版日期: 2020-10-26
:  P631.4  
基金资助:南方电网集团科研发展项目(GDKJXM20172879)
通讯作者: 张超
作者简介: 武建平(1973-),男,硕士,高级工程师,广东工业大学毕业,研究方向为安全生产管理及科技创新管理。Email: wjpskp@sina.com
引用本文:   
武建平, 张超, 陈剑平, 杨玺, 裴运军, 周庆东. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020, 44(5): 1066-1072.
WU Jian-Ping, ZHANG Chao, CHEN Jian-Ping, YANG Xi, PEI Yun-Jun, ZHOU Qing-Dong. Three dimensional finite element simulation of wide field electromagnetic method. Geophysical and Geochemical Exploration, 2020, 44(5): 1066-1072.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.0195      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I5/1066
Fig.1  单元剖分
Fig.2  地表Ex分量数值解与解析解对数重叠
Fig.3  浅层地电模型(a)和观测系统示意(b)
Fig.4  浅层地电模型不同频率观测区域广域视电阻率分布
Fig.5  浅层地电模型y=0测线频率组合剖面
Fig.6  深层地电模型(a)和观测系统示意(b)
Fig.7  深层模型不同频率观测区域广域视电阻率分布
Fig.8  y=0测线频率组合剖面
[1] 何继善. 大深度高精度广域电磁勘探理论与技术[J]. 中国有色金属学报, 2019,29(9):1809-1816.
[1] He J S. Theory and technology of wide field electromagnetic method[J]. The Chinese Journal of Nonferrous Metals, 2019,29(9):1809-1816.
[2] 邓锋华, 杨洋, 李帝铨, 等. 广域电磁法在隐伏金矿中的应用[J]. 工程地球物理学报, 2013,10(3):357-362.
[2] Deng F H, Yang Y, Li D Q, et al. The application of wide-field electromagnetic method to hidden gold deposit[J]. Chinese Journal of Engineering Geophysics, 2013,10(3):357-362.
[3] 何继善, 李帝铨, 戴世坤. 广域电磁法在湘西北页岩气探测中的应用[J]. 石油地球物理勘探, 2014,49(5):1006-1012.
[3] He J S, Li D Q, Dai S K. Shale gas detection with wide field electromagnetic method in North western Hunan[J]. OGP, 2014,49(5):1006-1012.
[4] 李帝铨, 谢维, 程党性. E-Ex广域电磁法三维数值模拟[J]. 中国有色金属学报, 2013,23(9):2459-2470.
[4] Li D Q, Xie W, Chen D X. Three-dimensional modeling for E-Ex wide field electromagnetic methods[J]. The Chinese Journal of Nonferrous Metals, 2013,23(9):2459-2470.
[5] 张乔勋, 李帝铨, 田茂军. 广域电磁法在赣南某盆地油气勘探中的应用[J]. 石油地球物理勘探, 2017,52(5):1085-1092.
[5] Zhang Q X, Li D Q, Tian M J. Application of wide field electromagnetic method to the hydrocarbon exploration in a basin of South Jiangxi[J]. OGP, 2017,52(5):1085-1092.
[6] 曹彦荣, 宋涛, 韩红庆, 等. 用广域电磁法勘查深层地热资源[J]. 物探与化探, 2017,41(4):678-683.
[6] Cao Y R, Song T, Han H Q, et al. Exploration of deep geothermal energy resources with wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2017,41(4):678-683.
[7] 孙求实, 袁杰, 宗文明, 等. 广域电磁法在辽西地区牛营子凹陷油气资源潜力评价中的应用[J]. 物探与化探, 2019,43(1):68-73.
[7] Sun Q S, Yuan J, Zong W M, et al. The application of wide field electromagnetic method to the oil and gas exploration of Niuyingzi sag in Liaoxi area[J]. Geophysical and Geochemical Exploration, 2019,43(1):68-73.
[8] Badea E A, Everett M E, Newman G A, et al. Finite element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials[J]. Geophysics, 2001,66(3):786-799.
doi: 10.1190/1.1444968
[9] 张钱江, 戴世坤, 陈龙伟, 等. 多源条件下直流电阻率法有限元三维数值模拟中一种近似边界条件[J]. 地球物理学报, 2016,59(9):3448-3458.
[9] Zhang Q J, Dai S K, Chen L W, et al. An approximate boundary condition for FEM-based 3-D numerical simulation with multi-source direct current resistivity method[J]. Chinese Journal of Geophysics, 2016,59(9):3448-3458.
[10] Weiss C J, Newman G A. Electromagnetic induction in a fully 3-D anisotropic earth[J]. Geophysics, 2002,67(4):1104-1114.
doi: 10.1190/1.1500371
[11] Streich R. 3D finite-difference frequency-domain modeling of controlled source electromagnetic data:Direct solution and optimization for high accuracy[J]. Geophysics, 2009,74(5):95-105.
[12] Xiong Z, Tripp A C. Electromagnetic scattering of large structures in layered earths using integral equations[J]. Radio Science, 1995,30(4):921-929.
doi: 10.1029/95RS00833
[13] 王若, 底青云, 王妙月, 等. 用积分方程法研究源与勘探区之间的三维体对CSAMT观测曲线的影响[J]. 地球物理学报, 2009,52(6):1573-1582.
doi: 10.3969/j.issn.0001-5733.2009.06.019
[13] Wang R, Di Q Y, Wang M Y, et al. Research on the effect of 3D body between transmitter and receivers on CSAMT response using Integral Equation method[J]. Chinese Journal of Geophysics, 2009,52(6):1573-1582.
[14] 彭荣华, 胡祥云, 李建慧, 等. 基于二次耦合势的广域电磁法有限体积三维正演计算[J]. 地球物理学报, 2018,61(10):4160-4170.
[14] Peng R H, Hu X Y, Li J H, et al. 3-D finite-volume forward modeling of wide-field EM using scattered potentials[J]. Chinese Journal of Geophysics, 2018,61(10):4160-4170
[15] 刘云鹤. 三维空源电磁法非线性共轭梯度反演研究[D]. 长春:吉林大学, 2011.
[15] Liu Y H. Nonlinear conjugate gradient inversion of three-dimensional space-source electromagnetic method[D]. Changchun:Jilin Universtiy, 2011.
[16] Grayver A V, Streich R, Ritter O. Three-dimensional parallel distributed inversion of CSEM data using a direct forward solver[J]. Geophysical Journal International, 2013,193(3):1432-1446.
doi: 10.1093/gji/ggt055
[17] 韩波, 胡祥云, Schultz A, 等. 复杂场源形态的海洋可控源电磁三维正演[J]. 地球物理学报, 2015,58(3):1059-1071.
doi: 10.6038/cjg20150330
[17] Han B, Hu X Y, Schultz A, et al. Three-dimensional forward modeling of the marine controlled-source electromagnetic field with complex source geometries[J]. Chinese Journal of Geophysics, 2015,58(3):1059-1071.
[18] 汤井田, 任政勇, 化希瑞. Coulomb 规范下地电磁场的自适应有限元模拟的理论分析[J]. 地球物理学报, 2007,50(5):1584-1594.
[18] Tang J T, Ren Z Y, Hua X R. Theoretical analysis of geo-electromagnetic modeling on Coulomb gauged potentials by adaptive finite element method[J]. Chinese Journal of Geophysics, 2007,50(5):1584-1594.
[19] 张钱江. 全区观测多次覆盖可控源电磁法观测系统模拟研究[D]. 长沙:中南大学, 2016.
[19] Zhang Q J. The simulation study of whole range multi-fold CSEM observation system[D]. Changsha:Central South University, 2016.
[20] 赵宁. 三维海洋可控源电磁法矢量有限元与耦合势有限体积数值模拟[D]. 成都:成都理工大学, 2014.
[20] Zhao N. Numerical simulation of three-dimensional marine controllable source electromagnetic normal vector finite element and coupled potential finite volume[D]. Chengdu:Chengdu University of Technology, 2014.
[21] 徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社, 1994.
[21] Xu S Z. The finite element method in geophysics[M]. Bejing: Science Press, 1994.
[22] 张继锋, 汤井田, 言喻, 等. 基于电场矢量波动方程的3D可控源电磁法有限单元法数值模拟[J]. 地球物理学报, 2009,52(12):3132-3141.
doi: 10.3969/j.issn.0001-5733.2009.12.023
[22] Zhang J F, Tang J T, Yan Y, et al. Three dimensional controlled source electromagnetic numerical simulation based on electric field vector wave equation using finite element method[J]. Chinese Journal of Geophysics, 2009,52(12):3132-3141.
[23] 周建美, 张烨, 汪宏年, 等. 耦合势有限体积法高效模拟各向异性地层中海洋可控源的三维电磁响应[J]. 物理学报, 2014,63(15):159101.
doi: 10.7498/aps.63.159101
[23] Zhou J M, Zhang Y, Wang H N, et al. Efficient simulation of three-dimensional marine controlled-source electromagnetic response in anisotropic formation by means of coupled potential finite volume method[J]. Acta Physica Sinica, 2014,63(15):159101.
doi: 10.7498/aps.63.159101
[24] 何继善. 广域电磁法和伪随机信号电法[M]. 北京: 高等教育出版社, 2010.
[24] He J S. Wide-area electromagnetic method and pseudo-random signal electrical method [M]. Bejing: Higher Education Press, 2010.
[25] 王顺国, 熊彬. 广域视电阻率的数值计算方法[J]. 物探化探计算技术, 2012,34(4):380-383.
[25] Wang S G, Xiong B. Numerical calculation methods of wide field apparent resistivity[J]. Computing Techniques for Geochemical Exploration, 2012,34(4):380-383.
[1] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[2] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[3] 肖妍姗, 周正华, 苏杰, 魏鑫. 地表水平正反敲击激振下孔法剪切波速测试理论依据讨论[J]. 物探与化探, 2021, 45(5): 1288-1294.
[4] 李帝铨, 肖教育, 张继峰, 胡艳芳, 刘最亮, 张新. WFEM与CSAMT在新元煤矿富水区探测效果对比[J]. 物探与化探, 2021, 45(5): 1359-1366.
[5] 朱云起, 李帝铨, 王金海. 基于MySQL的广域电磁法数据处理与解释软件[J]. 物探与化探, 2021, 45(4): 1030-1036.
[6] 苏鹏, 杨进. 时移电阻率反演模拟研究[J]. 物探与化探, 2021, 45(1): 159-164.
[7] 危志峰, 陈后扬, 吴西全. 广域电磁法在宜春某地地热勘查中的应用[J]. 物探与化探, 2020, 44(5): 1009-1018.
[8] 詹少全, 李爱勇, 王导丽, 郝红蕾, 王磊. 极寒环境中广域电磁法勘探技术研究[J]. 物探与化探, 2020, 44(5): 1019-1024.
[9] 田红军, 尹文斌, 刘光迪, 蒋永芳, 游文兵. 广域电磁法在低阻覆盖区的应用与评价——以河南中牟为例[J]. 物探与化探, 2020, 44(5): 1025-1030.
[10] 曾何胜, 徐元璋, 刘磊, 唐宝山, 张祎然, 李义, 陈宇峰. 广域电磁法在复杂电磁干扰环境的应用研究——以某市周边地热勘查为例[J]. 物探与化探, 2020, 44(5): 1031-1038.
[11] 王洪军, 熊玉新. 广域电磁法在胶西北金矿集中区深部探测中的应用研究[J]. 物探与化探, 2020, 44(5): 1039-1047.
[12] 梁维天, 孙新胜, 王东波, 冯家新, 孙文, 陈广镇. 广域电磁法在河洼多金属矿勘查中的应用[J]. 物探与化探, 2020, 44(5): 1048-1052.
[13] 王洪军, 田红军, 贺春艳, 刘光迪. 多种物探方法在胶西北金矿集中区深部勘探的效果分析[J]. 物探与化探, 2020, 44(5): 1053-1058.
[14] 王永兵, 尹文斌, 张磊. 航空广域电磁法初步探索[J]. 物探与化探, 2020, 44(5): 1059-1065.
[15] 蒋永芳, 李芳书, 曹渊, 夏灵云, 张婷. 广域电磁法在金属矿勘探中的应用研究和探讨[J]. 物探与化探, 2020, 44(5): 1073-1077.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com