Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (2): 514-520    DOI: 10.11720/wtyht.2024.1252
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
潜山花岗岩裂缝性储层阵列声波测井数值模拟研究
杜惟一1,2(), 张冲1,2(), 韩华洋1,2, 赵腾腾1,2, 张文艺1,2
1.油气资源与勘探技术教育部重点实验室(长江大学),湖北 武汉 430100
2.长江大学 地球物理与石油资源学院,湖北 武汉 430100
A numerical simulation study on array acoustic logging of fractured granite reservoirs in buried hills
DU Wei-Yi1,2(), ZHANG Chong1,2(), HAN Hua-Yang1,2, ZHAO Teng-Teng1,2, ZHANG Wen-Yi1,2
1. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan 430100, China
2. College of Geophysics and Petroleum Resources, Yangtze University, Wuhan 430100, China
全文: PDF(3722 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

南海琼东南盆地潜山储层储集空间类型复杂多样,裂缝多发育,导致储层具有较强的非均质性,该地区多见花岗岩沉积,因此有效评价花岗岩储层中裂缝的发育情况至关重要。利用COMSOL Multiphysics有限元模拟软件,采用有限元方法,对使用阵列声波测井探测不同宽度、不同倾角及不同长度的花岗岩储层进行模拟,总结出不同发育状态裂缝的阵列声波测井响应特征。研究发现:裂缝性地层横波受裂缝宽度变化影响不明显,横波衰减程度与裂缝倾角变化呈反比,与裂缝长度变化呈正比;斯通利波对裂缝宽度、裂缝倾角、裂缝长度等变化均有明显响应,斯通利波衰减程度与裂缝宽度及裂缝倾角均呈正比;在裂缝长度小于0.1 m时,斯通利波衰减程度与裂缝长度呈正比,裂缝长度大于0.1 m之后,斯通利波对裂缝长度变化无明显响应。本文研究结果为采用阵列声波测井方法判断花岗岩储层中裂缝的发育状态提供了依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜惟一
张冲
韩华洋
赵腾腾
张文艺
关键词 阵列声波测井花岗岩储层数值模拟潜山裂缝    
Abstract

The buried-hill reservoirs in the Qiongdongnan Basin of the South China Sea exhibit intricate reservoir spaces and numerous fractures, leading to their pronounced heterogeneity. Since granite sediments spread across the study area, it is critical to effectively evaluate the development of fractures in granite reservoirs. Based on the COMSOL Multiphysics software and the finite element method, this study simulated the use of array acoustic logging to detect granite reservoirs with different widths, dip angles, and lengths, summarizing the response characteristics of fractures in different development states. The results are as follows: (1) Shear waves in fractured formations are subjected to non-significant influence of fracture widths, and their attenuation is inversely proportional to fracture dip angles and directly proportional to fracture lengths; (2) Stoneley waves manifest significant response to the changes in fracture widths, dip angles, and lengths, and their attenuation is proportional to both fracture widths and dip angles; (3) The attenuation of Stoneley waves is directly proportional to fracture lengths below 0.1 m but shows subtle response to fracture lengths above 0.1 m. The results of this study provide a basis for determining the development state of fractures in granite reservoirs using the array acoustic log method.

Key wordsarray acoustic log    granite reservoir    numerical simulation    buried hill    fracture
收稿日期: 2023-06-15      修回日期: 2023-09-05      出版日期: 2024-04-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目“致密气储层岩石导电机理研究及饱和度评价”(41404084);国家科技重大专项子课题”复杂碳酸盐岩储层测井评价关键技术研究与应用”(2017ZX05032-003-005)
通讯作者: 张冲
作者简介: 杜惟一(1999-),女,在读硕士,主要研究方向为测井数据处理与综合解释。Email:1079396023@qq.com
引用本文:   
杜惟一, 张冲, 韩华洋, 赵腾腾, 张文艺. 潜山花岗岩裂缝性储层阵列声波测井数值模拟研究[J]. 物探与化探, 2024, 48(2): 514-520.
DU Wei-Yi, ZHANG Chong, HAN Hua-Yang, ZHAO Teng-Teng, ZHANG Wen-Yi. A numerical simulation study on array acoustic logging of fractured granite reservoirs in buried hills. Geophysical and Geochemical Exploration, 2024, 48(2): 514-520.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1252      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I2/514
Fig.1  含裂缝模型示意
材料设置 密度/
(kg·m-3)
声速/
(m·s-1)
杨氏模
量/Pa
泊松比
地层
井眼
裂缝
2600
1000
1000
5000
1500
1500
6×1010
0
0
0.5
0.25
0.25
Table 1  模型各材料参数
Fig.2  裂缝模型的波形对比
Fig.3  裂缝宽度与声压衰减的关系曲线
Fig.4  裂缝倾角与声压的关系曲线
Fig.5  裂缝长度与声压衰减的关系曲线
Fig.6  裂缝宽度与斯通利波衰减的关系
Fig.7  裂缝倾角与横波、斯通利波的关系
Fig.8  裂缝长度<0.1m时与横波和斯通利波的关系
Fig.9  裂缝长度>0.1m时与横波的关系
[1] 陈建军, 马艳萍, 陈建中, 等. 南海北部陆缘盆地形成的构造动力学背景[J]. 地学前缘, 2015, 22(3):38-47.
doi: 10.13745/j.esf.2015.03.003
[1] Chen J J, Ma Y P, Chen J Z, et al. Tectonic dynamics of northern continental margin basins in South China Sea[J]. Earth Science Frontiers, 2015, 22(3):38-47.
[2] 李鸿明. 琼东南盆地松南低凸起中生代花岗岩潜山储层特征及控制因素分析[D]. 长春: 吉林大学, 2022.
[2] Li H M. Analysis of the characteristics and control factors of the Mesozoic granite buried hill reservoir in the Songnan low uplift of the Qiongdongnan Basin[D]. Changchun: Jilin University, 2022.
[3] 陈宏达, 于福华. 渤海西部曹妃甸1-6花岗岩潜山油藏的发现[J]. 中国海上油气地质, 1995, 7(2):35-39.
[3] Chen H D, Yu F H. Discovery of CFD1-6 granite buried-hill oil pool in western Bohai area[J]. China Offshore Oil and Gas, 1995, 7(2):35-39.
[4] 窦立荣, 魏小东, 王景春, 等. 乍得Bongor盆地花岗质基岩潜山储层特征[J]. 石油学报, 2015, 36(8):897-904,925.
doi: 10.7623/syxb201508001
[4] Dou L R, Wei X D, Wang J C, et al. Characteristics of granitic basement rock buried-hill reservoir in Bongor Basin,Chad[J]. Acta Petrolei Sinica, 2015, 36(8):897-904,925.
[5] 甘军, 梁刚, 李兴, 等. 琼东南盆地梅山组海底扇天然气成因类型及成藏模式[J]. 地质学报, 2022, 96(3):1069-1078.
[5] Gan J, Liang G, Li X, et al. Genetic types and accumulation model of submarine fan gas in the Meishan Formation,Qiongdongnan Basin[J]. Acta Geologica Sinica, 2022, 96(3):1069-1078.
[6] 汤婧, 宋来明, 梁旭, 等. 渤海湾盆地花岗岩潜山油田裂缝发育特征厘定[C]// 2019油气田勘探与开发国际会议论文集. 西安: 西安石油大学,陕西省石油学会, 2019:978-979.
[6] Tang J, Song L M, Liang Xu, et al. Determination of fracture development characteristics in granite buried hill oil fields in the Bohai Bay Basin[C]// Proceedings of the 2019 International Conference on Oil and Gas Field Exploration and Development. Xi'an: Xi'an University of Petroleum,Shaanxi Petroleum Society, 2019:978-979.
[7] Morris R L, Grine D R, Arkfeld T E. Using compressional and shear acoustic amplitudes for the location of fractures[J]. Journal of Petroleum Technology, 1964, 16(6):623-632.
doi: 10.2118/723-PA
[8] Paillet F L. Acoustic propagation in the vicinity of fractures which intersect a fluid-filled borehole[C]// SPWLA 21st Annual Logging Symposium,Lafayette,Louisiana,July 8-11,1980.
[9] Zlatev P, Poeter E, Higgins J. Physical modeling of the full acoustic waveform in a fractured,fluid-filled borehole[J]. Geophysics, 1988, 53(9):1219-1224.
doi: 10.1190/1.1442562
[10] 陈德华, 丛健生, 徐德龙, 等. 裂缝性地层中的井孔声场模拟[J]. 大庆石油学院学报, 2004, 28(3):4-6,13.
[10] Chen D H, Cong J S, Xu D L, et al. Simulation of the fracture formation acoustic field in boreholes[J]. Journal of Northeast Petroleum University, 2004, 28(3):4-6,13.
[11] 何峰江, 陶果, 王锡莉. 贴井壁声波测井仪的有限差分模拟研究[J]. 地球物理学报, 2006, 49(3):923-928.
[11] He F J, Tao G, Wang X L. Finite difference modeling of the acoustic field by sidewall logging devices[J]. Chinese Journal of Geophysics, 2006, 49(3):923-928.
[12] 魏周拓, 陈雪莲, 范宜仁, 等. 井旁裂缝的声场模拟及反射波提取方法[J]. 石油地球物理勘探, 2010, 45(5):748-756,792,622-623.
[12] Wei Z T, Chen X L, Fan Y R, et al. Sonic field simulation for borehole-side fracture and reflection wave extraction method[J]. Oil Geophysical Prospecting, 2010, 45(5):748-756,792,622-623.
[13] 龚丹, 章成广. 裂缝性致密砂岩储层声波测井数值模拟响应特性研究[J]. 石油天然气学报, 2013, 35(7):82-86,3.
[13] Gong D, Zhang C G. Research on numerical simulation response characteristics of acoustic logging for fractured tight sandstone reservoirs[J]. Journal of Oil and Gas Technology, 2013, 35(7):82-86,3.
[14] Matuszyk P J, Torres-Verdin C, Pardo D. Frequency-domain finite-element simulations of 2D sonic wireline borehole measurements acquired in fractured and thinly bedded formations[J]. Geophysics, 2013, 78(4):D193-D207.
[15] 阎守国, 谢馥励, 龚丹, 等. 含有倾斜薄裂缝孔隙地层中的井孔声场[J]. 地球物理学报, 2015, 58(1):307-317.
doi: 10.6038/cjg20150128
[15] Yan S G, Xie F L, Gong D, et al. Borehole acoustic fields in porous formation with tilted thin fracture[J]. Chinese Journal of Geophysics, 2015, 58(1):307-317.
[16] 闫怡飞, 赵云, 宋胜利, 等. 基于反射声波测井有限元方法的井旁裂缝分布特征[J]. 中国石油大学学报:自然科学版, 2018, 42(3):57-63.
[16] Yan Y F, Zhao Y, Song S L, et al. Near wellbore fracture distribution characteristics based on acoustic reflection logging finite element method[J]. Journal of China University of Petroleum:Edition of Natural Science, 2018, 42(3):57-63.
[17] 刘黎, 章成广, 蔡明, 等. 裂缝对井眼声波的传播影响规律研究[J]. 物探与化探, 2019, 43(6):1333-1340.
[17] Liu L, Zhang C G, Cai M, et al. Studies on the effec of crack on the propagation of acoustic waves in wellbore[J]. Geophysical and Geochemica Exploration, 2019, 43(6):1333-1340.
[18] 欧伟明, 王祝文, 宁琴琴, 等. 基于线性滑动模型的裂缝性地层声波测井响应数值模拟[J]. 中国石油大学学报:自然科学版, 2019, 43(3):56-64.
[18] Ou W M, Wang Z W, Ning Q Q, et al. Numerical simulation of acoustic logging in fractured formation based on linear-slip model[J]. Journal of China University of Petroleum:Edition of Natural Science, 2019, 43(3):56-64.
[19] 车小花, 赵腾, 乔文孝, 等. 多极子声波测井的裂缝识别与评价[J]. 石油与天然气地质, 2020, 41(6):1263-1272.
[19] Che X H, Zhao T, Qiao W X, et al. Fracture identification and evaluation based on multi-pole acoustic logging[J]. Oil & Gas Geology, 2020, 41(6):1263-1272.
[20] 曹鸿飞, 章成广, 蔡明, 等. 粗糙裂缝对井眼声波传播的影响[J]. 科学技术与工程, 2022, 22(23):9947-9954.
[20] Cao H F, Zhang C G, Cai M, et al. Data influence of rough crack on borehole acoustic wave propagation[J]. Science Technology and Engineering, 2022, 22(23):9947-9954.
[21] 张波, 李超, 张晋言, 等. 三维声波测井探测特性分析与处理技术应用[J]. 应用声学, 2021, 40(5):774-784.
[21] Zhang B, Li C, Zhang J Y, et al. Analysis of detecting characteristics and application of data processing technology for 3D array acoustic logging[J]. Journal of Applied Acoustics, 2021, 40(5):774-784.
[22] 向旻. 裂缝性地层声波全波列测井时频特征研究[D]. 长春: 吉林大学, 2016.
[22] Xiang M. Study on time-frequency characteristics of acoustic full wave logging in fractured formations[D] Changchun: Jilin University, 2016.
[23] 陈乔, 刘向君, 梁利喜, 等. 裂缝模型声波衰减系数的数值模拟[J]. 地球物理学报, 2012, 55(6):2044-2052.
[23] Chen Q, Liu X J, Liang L X, et al. Numerical simulation of the fractured model acoustic attenuation coefficient[J]. Chinese Journal of Geophysics, 2012, 55(6):2044-2052.
[24] 杜光升, 乔文孝, 王耀俊. 用有限元法计算井中水平裂缝的反射斯通利波[J]. 石油大学学报:自然科学版, 2000, 24(1):95-97,1.
[24] Du G S, Qiao W X, Wang Y J. Computation of reflected stoneley wave at a horizontal fractures using finite element method[J]. Journal of the University of Petroleum,China, 2000, 24(1):95-97,1.
[25] 帕尔哈提·祖努, 齐兴华, 安然, 等. 裂缝性煤层声波测井响应的有限元模拟研究[J]. 煤炭技术, 2022, 41(6):59-62.
[25] Paerhati Z N, Qi X H, An R, et al. Finite element simulation of acoustic logging response in fractured coal seams[J]. Coal Technology, 2022, 41(6):59-62.
[26] 齐兴华, 向旻, 安然, 等. 煤层发育状况的单极子声波测井响应数值模拟[J]. 煤炭技术, 2022, 41(7):68-71.
[26] Qi X H, Xiang M, An R, et al. Numerical simulation of monopole acoustic logging response to coal seam development[J]. Coal Technology, 2022, 41(7):68-71.
[1] 梁志强, 李弘. 不同方位各向异性反演技术对比和总结[J]. 物探与化探, 2024, 48(2): 443-450.
[2] 张婧, 汪勇, 赵慧言, 衡德, 黄君, 张晓丹, 王文文, 贺燕冰. 基于全局自适应MCMC算法的裂缝型储层缝隙流体因子叠前地震反演[J]. 物探与化探, 2024, 48(1): 105-112.
[3] 黄瑶. 基于三维电阻率法的水电工程隧道地质条件探查[J]. 物探与化探, 2024, 48(1): 281-286.
[4] 张雪昂, 杨志超, 李小燕, 董丽媛. 多孔隙度变化倾角裂缝型砂岩铀矿超热中子运移模拟[J]. 物探与化探, 2023, 47(6): 1547-1554.
[5] 黄彦庆. 川东北元坝地区致密砂岩多产状裂缝刻画[J]. 物探与化探, 2023, 47(5): 1189-1197.
[6] 李秋辰, 陈冬, 许文豪, 易善鑫, 谢兴隆, 关俊朋, 崔芳姿. 基于微地震连续裂缝网络模型的SRV研究[J]. 物探与化探, 2023, 47(4): 1048-1055.
[7] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[8] 张建伟, 杨卓静, 王新杰, 李胜涛, 赵玉军. 碳储深孔超声成像测井系统设计与应用[J]. 物探与化探, 2022, 46(6): 1500-1506.
[9] 肖世鹏, 熊高君, 袁梦雨, 毛明秋, 王胜艺, 韦增涛. 黏声波高阶傅里叶有限差分法参数优化成像[J]. 物探与化探, 2022, 46(5): 1207-1213.
[10] 柴伦炜. 井间超高密度电法探测基桩的模拟及应用[J]. 物探与化探, 2022, 46(5): 1283-1288.
[11] 谢锐, 阎建国, 陈琪. 叠前各向异性系数反演及在裂缝预测中的应用[J]. 物探与化探, 2022, 46(4): 968-976.
[12] 苏林帅, 蔡明, 郑占树, 徐宝宝, 罗居森, 胡燕杰, 张荆宇. 井眼扩径对水平井声波测井响应影响的数值模拟[J]. 物探与化探, 2022, 46(2): 467-473.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[15] 王成泉, 王孟华, 周佳宜, 王盛亮, 杨洲鹏, 刘慧, 张红文. 多属性融合定量储层预测方法研究与应用——以廊固凹陷杨税务潜山为例[J]. 物探与化探, 2022, 46(1): 87-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com