Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (5): 1176-1184    DOI: 10.11720/wtyht.2024.1300
  “短偏移距瞬变电磁法技术与应用”专栏(特约专栏主编:薛国强) 本期目录 | 过刊浏览 | 高级检索 |
煤矿富水体SOTEM响应三维数值模拟研究
常江浩1(), 薛俊杰2(), 孟庆鑫1, 赵鹏3
1.河北地质大学 自然资源部京津冀城市群地下空间智能探测与装备重点实验室,河北 石家庄 050031
2.中国科学院岩石圈演化国家重点实验室,中国科学院地质与地球物理研究所,北京 100029
3.北京中科地垣科技有限公司,北京 100190
Three-dimensional numerical simulation of short-offset transient electromagnetic responses to water-rich bodies in coal mines
CHANG Jiang-Hao1(), XUE Jun-Jie2(), MENG Qing-Xin1, ZHAO Peng3
1. Key Laboratory of Intelligent Detection and Equipment for Underground Space of Beijing-Tianjin-Hebei Urban Agglomeration,Ministry of Natural Resources, Hebei GEO University, Shijiazhuang 050031, China
2. State Key Laboratory of Lithospheric Evolution,Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
3. Beijing Zhongkediyuan Technology Co., Ltd., Beijing 100190, China
全文: PDF(7711 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

采用三维时域有限差分法对三维地电模型的SOTEM响应进行正演计算,发现:①采空区或陷落柱上方观测的电场Ex响应衰减曲线在早期高于背景响应,在晚期均低于背景响应;②偏移距越小,∂Bz/∂t响应信号的相对异常越大,发射源长度的增加能提升信号强度,但同时也会导致相对异常的略微下降;③当测线靠近发射源时,采空区或含水陷落柱的∂Bz/∂t响应在整体上低于背景值,当测线远离发射源时,采空区或含水陷落柱的∂Bz/∂t响应在整体上高于背景值。本文计算结果对于认识SOTEM对煤矿典型富水体的探测能力具有重要意义,为SOTEM装置参数选取及其在煤炭领域的推广应用打下理论基础。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常江浩
薛俊杰
孟庆鑫
赵鹏
关键词 煤矿积水采空区含水陷落柱SOTEM响应三维数值模拟    
Abstract

This study performed forward modeling for the short-offset transient electromagnetic (SOTEM) responses of a three-dimensional geoelectric model using the three-dimensional finite-difference time-domain method. The results reveal that: (1) The attenuation curves of the Ex responses from the electric field above the goaf or collapse column were above the background response curve at early times but below it at later times; (2) A shorter offset corresponded to a higher relative anomaly of ∂Bz/∂t response signals. Increasing the length of the transmitting source could enhance the signal intensity while slightly decreasing the relative anomaly; (3) In the case of survey lines close to the transmitting source, the overall ∂Bz/∂t responses of the goaf or collapse column were weaker than the background responses. For survey lines away from the transmitting source, the overall ∂Bz/∂t responses of the goaf or collapse column were stronger than the background responses. In summary, the calculation results demonstrate significant implications for understanding the ability of the SOTEM method to detect typical water-rich bodies in coal mines, laying a theoretical foundation for the parameter selection of SOTEM devices and their generalized application in the coal sector.

Key wordswaterlogged goaf in a coal mine    water-bearing collapse column    SOTEM response    three-dimensional numerical simulation
收稿日期: 2023-07-07      修回日期: 2024-07-17      出版日期: 2024-10-20
ZTFLH:  P631.3  
基金资助:河南省豫地科技集团2024年重点科研项目(JTZDKY202405);广西壮族自治区重点研发计划项目(2023AB260490);中央引导地方科技发展资金项目
通讯作者: 薛俊杰(1992-),男,博士后,主要从事电磁场响应与反演成像算法研究工作。Email:junjie_58@126.com
作者简介: 常江浩(1989-),男,副教授,主要从事瞬变电磁法理论与应用方面的研究工作。Email:jhchang@126.com
引用本文:   
常江浩, 薛俊杰, 孟庆鑫, 赵鹏. 煤矿富水体SOTEM响应三维数值模拟研究[J]. 物探与化探, 2024, 48(5): 1176-1184.
CHANG Jiang-Hao, XUE Jun-Jie, MENG Qing-Xin, ZHAO Peng. Three-dimensional numerical simulation of short-offset transient electromagnetic responses to water-rich bodies in coal mines. Geophysical and Geochemical Exploration, 2024, 48(5): 1176-1184.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1300      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I5/1176
Fig.1  积水采空区模型
Fig.2  不同时刻采空区影响下电场Ex异常场的分布
Fig.3  不同时刻采空区影响下?Bz/?t异常场的分布
Fig.4  含水陷落柱模型
Fig.5  不同时刻陷落柱影响下的电场Ex异常场分布
Fig.6  不同时刻陷落柱影响下?Bz/?t异常场分布
Fig.7  积水采空区测线布置
Fig.8  采空区3条测线的多测道响应
Fig.9  不同偏移距下SOTEM瞬变电磁响应(a)及相对异常衰减曲线(b)
Fig.10  不同长度发射源激发下SOTEM瞬变电磁响应(a)及相对异常衰减曲线(b)
Fig.11  含水陷落柱测线布置
Fig.12  含水陷落柱3条测线的多测道响应
Fig.13  含水陷落柱影响下SOTEM瞬变电磁响应衰减曲线
[1] 武强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报, 2014, 39(5):795-805.
[1] Wu Q. Progress, problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society, 2014, 39(5):795-805.
[2] Chang J H, Yu J C, Liu Z X. Three-dimensional numerical modeling of full-space transient electromagnetic responses of water in goaf[J]. Applied Geophysics, 2016, 13(3):539-552.
[3] 牛之琏. 时间域电磁法原理[M]. 长沙: 中南工业大学出版社,1992.
[3] Niu Z L. Principle of time domain electromagnetic method[M]. Changsha: Central South University of Technology Press,1992.
[4] 李貅. 瞬变电磁测深的理论与应用[M]. 西安: 陕西科学出版社, 2002.
[4] Li X. Theory and application of transient electromagnetic method[M]. Xi'an: Shaanxi Science and Technology Press, 2002.
[5] 薛国强, 陈卫营, 武欣. 电性源短偏移距瞬变电磁法理论与应用[M]. 北京: 科学出版社, 2022.
[5] Xue G Q, Chen W Y, Wu X. Theory and application of short offset transient electromagnetic method for electrical source[M]. Beijing: Science Press, 2022.
[6] 嵇艳鞠, 王艳, 林君, 等. 利用瞬变电磁技术进行地下水资源勘察[J]. 工程勘察, 2005, 33(6):64-67.
[6] Ji Y J, Wang Y, Lin J, et al. Prospecting of groundwater by using transient-electromagnetic method[J]. Geotechnical Investigation & Surveying, 2005, 33(6):64-67.
[7] 于景邨. 矿井瞬变电磁法勘探[M]. 徐州: 中国矿业大学出版社, 2007.
[7] Yu J C. Transient electromagnetic exploration in mine[M]. Xuzhou: China University of Mining & Technology Press, 2007.
[8] Xue G Q, Yan Y J, Li X, et al. Transient electromagnetic S-inversion in tunnel prediction[J]. Geophysical Research Letters, 2007, 34(18):529-538.
[9] 常江浩. 煤矿富水区矿井瞬变电磁响应三维数值模拟及应用[D]. 徐州: 中国矿业大学, 2017.
[9] Chang J H. Three-dimensional numerical simulation and application of mine transient electromagnetic responses of water-rich area in coal mine[D]. Xuzhou: China University of Mining and Technology, 2017.
[10] 底青云, 朱日祥, 薛国强, 等. 我国深地资源电磁探测新技术研究进展[J]. 地球物理学报, 2019, 62(6):2128-2138.
doi: 10.6038/cjg2019M0633
[10] Di Q Y, Zhu R X, Xue G Q, et al. New development of the electromagnetic (EM) methods for deep exploration[J]. Chinese Journal of Geophysics, 2019, 62(6):2128-2138.
[11] 薛国强, 陈卫营, 周楠楠, 等. 接地源瞬变电磁短偏移深部探测技术[J]. 地球物理学报, 2013, 56(1):255-261.
[11] Xue G Q, Chen W Y, Zhou N N, et al. Short-offset TEM technique with a grounded wire source for deep sounding[J]. Chinese Journal of Geophysics, 2013, 56(1):255-261.
[12] Xue G Q, Gelius L J, Sakyi P A, et al. Discovery of a hidden BIF deposit in Anhui province,China by integrated geological and geophysical investigations[J]. Ore Geology Reviews, 2014,63:470-477.
[13] Chen W Y, Xue G Q, Muhammad Y K, et al. Application of short-offset TEM (SOTEM) technique in mapping water-enriched zones of coal stratum,an example from east China[J]. Pure and Applied Geophysics, 2015,172:1643-1651.
[14] Xue G Q, Zhang L B, Hou D Y, et al. Integrated geological and geophysical investigations for the discovery of deeply buried goldpolymetallic deposits in China[J]. Geological Journal, 2020, 55(3):1771-1780.
[15] Xue G Q, Zhou N N, Guo W B, et al. Delineation of sedimentary bauxite deposits in Shaanxi Province using the gravity and transient electromagnetic methods[J]. Ore Geology Reviews, 2022,144:104865.
[16] 嵇艳鞠, 王远, 徐江, 等. 无人飞艇长导线源时域地空电磁勘探系统及其应用[J]. 地球物理学报, 2013, 56(11):3640-3650.
[16] Ji Y J, Wang Y, Xu J, et al. Development and application of the grounded long wire source airborne electromagnetic exploration system based on an unmanned airship[J]. Chinese Journal of Geophysics, 2013, 56(11):3640-3650.
[17] 陈卫营, 薛国强, 崔江伟, 等. SOTEM响应特性分析与最佳观测区域研究[J]. 地球物理学报, 2016, 59(2):739-748.
doi: 10.6038/cjg20160231
[17] Chen W Y, Xue G Q, Cui J W, et al. Study on the response and optimal observation area for SOTEM[J]. Chinese Journal of Geophysics, 2016, 59(2):739-748.
[18] Commer M, Newman G. A parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources[J]. Geophysics, 2004, 69(5):1192-1202.
[19] Chang J, Wu X, Lei K, et al. Three-dimensional modeling of ground-airborne transient electromagnetic responses of typical models based on the finite difference approach[J]. Journal of Applied Geophysics, 2022,197:104545.
[1] 王刚, 杨生, 雷达, 朱威, 姚大为. CSAMT场源效应的三维模拟与试验[J]. 物探与化探, 2015, 39(1): 132-135.
[2] 王建历, 阮百尧, 黄俊革, 侯冬梅, 杨庭伟. 坑道直流电法环境影响三维数值模拟与结果分析[J]. 物探与化探, 2011, 35(3): 414-418.
[3] 周仕新, 岳建华. 巷道围岩中瞬变电磁场三维数值模拟[J]. 物探与化探, 2005, 29(6): 533-536,540.
[4] 强建科, 阮百尧. 不同电阻率测深方法对旁侧不均匀体的反映[J]. 物探与化探, 2003, 27(5): 379-382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com