Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (4): 980-988    DOI: 10.11720/wtyht.2025.1384
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
垃圾填埋场渗漏的频谱激电三维数值模拟
石靖1(), 熊彬1,2(), 徐志锋1, 黄理善3, 陆裕国1,4, 李耀昕1, 喻佳敏1
1.桂林理工大学 地球科学学院, 广西 桂林 541006
2.中国地球物理学会 南方岩溶区地球物理探测技术重点实验室, 广西 桂林 541006
3.中国有色桂林矿产地质研究院有限公司, 广西 桂林 541004
4.中国地质调查局 西宁自然资源综合调查中心, 青海 西宁 810021
Three-dimensional numerical simulations of spectral induced polarization for detecting landfill leachate
SHI Jing1(), XIONG Bin1,2(), XU Zhi-Feng1, HUANG Li-Shan3, LU Yu-Guo1,4, LI Yao-Xin1, YU Jia-Min1
1. College of Earth Sciences, Guilin University of Technology, Guilin 541006, China
2. Key Laboratory of Geophysical Exploration Technology in Southern Karst Area, Chinese Geophysical Society, Guilin 541006, China
3. China Nonferrous Metals (Guilin) Geology and Mining Co., Ltd., Guilin 541004, China
4. Xining Natural Resources Comprehensive Survey Center, China Geological Survey, Xining 810021, China
全文: PDF(5250 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 垃圾填埋场渗漏液污染土壤和地下水的问题日益突出,基于渗漏液具有明显的低阻、高极化、高时间常数和低频率相关系数的电性特征,利用频谱激电法对垃圾填埋场进行三维有限元数值模拟,讨论该方法在填埋场渗漏液探测中的理论效果。首先,利用本文算法对典型地电模型进行正演,数值解与解析解的最大相对误差低于2.5%,表明算法准确有效;其次,依据垃圾填埋场真实电性特征设定激电模型参数,使数值模拟更贴合实际;最后,对比分析不同情况下填埋场发生渗漏的激电异常响应。结果表明:无论填埋场是否有高阻防渗墙,视复电阻率相位与视频散率均能准确圈定出渗漏液位置;相同规模的渗漏液羽化带,位置越浅,其视复电阻率相位和视频散率的异常形态越显著;与直流电阻率法相比,频谱激电法可以观测到地下更为丰富的电性参数,其应用于垃圾填埋场渗漏液探测的效果甚佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石靖
熊彬
徐志锋
黄理善
陆裕国
李耀昕
喻佳敏
关键词 频谱激电法数值模拟垃圾填埋场渗漏液有限单元法    
Abstract

The contamination of soils and groundwater caused by landfill leachate is increasingly prominent. Given the distinctive electrical properties of leachate, such as low resistivity, high polarization, high time constant, and low-frequency correlation coefficient, this study performed three-dimensional finite element numerical simulations of landfills using the spectral induced polarization (SIP) method. The aim is to explore the theoretical effects of this method in detecting landfill leachate. First, this study conducted forward modeling for typical geoelectric models using the algorithm developed in this study. The result revealed a maximum relative error between the numerical and analytical solutions of less than 2.5%, demonstrating the algorithm's accuracy and effectiveness. Second, the parameters of the SIP model were set based on the actual electrical characteristics of landfills, ensuring that the numerical simulations closely reflected actual conditions. Finally, SIP anomaly responses were compared and analyzed for landfill leachate leakage under different scenarios. The results indicate that the leachate locations can be accurately delineated using the apparent complex resistivity's phase and apparent dispersion, regardless of whether landfills are equipped with high-resistivity impermeable walls. For leachate plumes of the same scale, shallower locations corresponded to more pronounced anomaly morphologies of apparent complex resistivity's phase and apparent dispersion. Compared to the direct current resistivity method, the SIP method can detect richer underground electrical parameters, achieving better application effects in detecting landfill leachate.

Key wordsspectral induced polarization (SIP) method    numerical simulation    landfill    leachate    finite element method
收稿日期: 2024-09-14      修回日期: 2024-11-29      出版日期: 2025-08-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目(42174080)
通讯作者: 熊彬(1974-),男,教授,主要研究方向为电磁地球物理勘查理论与方法。Email: xiongbin@glut.edu.cn
作者简介: 石靖(1992-),男,硕士研究生,主要研究方向为地质资源与地质工程(应用地球物理)。Email: 841414840@qq.com
引用本文:   
石靖, 熊彬, 徐志锋, 黄理善, 陆裕国, 李耀昕, 喻佳敏. 垃圾填埋场渗漏的频谱激电三维数值模拟[J]. 物探与化探, 2025, 49(4): 980-988.
SHI Jing, XIONG Bin, XU Zhi-Feng, HUANG Li-Shan, LU Yu-Guo, LI Yao-Xin, YU Jia-Min. Three-dimensional numerical simulations of spectral induced polarization for detecting landfill leachate. Geophysical and Geochemical Exploration, 2025, 49(4): 980-988.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1384      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I4/980
ρ0/(Ω·m) m τ/s c h/m
Layer1 20 0.1 1.0 0.25 10
Layer2 100 0.5 1.0 0.25 -
Table 1  水平层状介质模型参数
Fig.1  对称四极装置视复电阻率测深曲线的实部(a)与虚部(b)
Fig.2  对称四极装置视复电阻率测深曲线的相对误差曲线
ρ0/(Ω·m) m τ/s c
围岩 100 0.001 0.01 0.25
填埋区 60 0.001 0.10 0.25
防渗墙 1 000 0.001 0.01 0.25
渗漏液 0.4 0.600 10.0 0.10
Table 2  垃圾填埋场中介质的激电参数
Fig.3  模型1无渗漏无防渗墙的垃圾填埋场
Fig.4  模型1 Dipole-Dipole装置视复电阻率实部(a)、虚部(b)、相位(c)(f=1 Hz)及视频散率(d)等值线断面
Fig.5  模型2中部渗漏无防渗墙的垃圾填埋场
Fig.6  模型2 Dipole-Dipole装置视复电阻率实部(a)、虚部(b)、相位(c) (f=1 Hz)及视频散率(d)等值线断面
Fig.7  模型3底部渗漏无防渗墙的垃圾填埋场
Fig.8  模型3 Dipole-Dipole装置视复电阻率实部(a)、虚部(b)、相位(c) (f=1 Hz)及视频散率(d)等值线断面
Fig.9  模型4底部渗漏带防渗墙的垃圾填埋场
Fig.10  模型4 Dipole-Dipole装置视复电阻率实部(a)、虚部(b)、相位(c) (f=1 Hz)及视频散率(d)等值线断面
Fig.11  模型5中部渗漏带防渗墙的垃圾填埋场
Fig.12  模型5 Dipole-Dipole装置视复电阻率实部(a)、虚部(b)、相位(c) (f=1 Hz)及视频散率(d)等值线断面
Fig.13  模型6底部渗漏带防渗墙的垃圾填埋场
Fig.14  模型6 Dipole-Dipole装置视复电视率实部(a)、虚部(b)、相位(c) (f=1 Hz)及视频散率(d)等值线断面
[1] Sykes J F, Pahwa S B, Lantz R B, et al. Numerical simulation of flow and contaminant migration at an extensively monitored landfill[J]. Water Resources Research, 1982, 18(6):1687-1704.
[2] 程业勋, 刘海生, 赵章元. 城市垃圾污染的地球物理调查[J]. 工程地球物理学报, 2004, 1(1):26-30.
[2] Cheng Y X, Liu H S, Zhao Z Y. Investigation of urban landfill contamination using geophysical methods[J]. Chinese Journal of Engineering Geophysics, 2004, 1(1):26-30.
[3] 刘兆平, 杨进, 罗水余. 地球物理方法对垃圾填埋场探测的有效性试验研究[J]. 地学前缘, 2010, 17(3):250-258.
[3] Liu Z P, Yang J, Luo S Y. The application of geophysical methods to the analysis of landfill[J]. Earth Science Frontiers, 2010, 17(3):250-258.
[4] 马媛媛, 郭秀军, 朱大伟, 等. 生活垃圾渗滤液污染砂土电阻率变化机制实验研究[J]. 地球物理学进展, 2010, 25(3):1098-1104.
[4] Ma Y Y, Guo X J, Zhu D W, et al. Investigation on electrical resistivity of soils by contaminated domestic landfill-leachate[J]. Progress in Geophysics, 2010, 25(3):1098-1104.
[5] 刘国辉, 徐晶, 王猛, 等. 高密度电阻率法在垃圾填埋场渗漏检测中的应用[J]. 物探与化探, 2011, 35(5):680-683,691.
[5] Liu G H, Xu J, Wang M, et al. The application of high-density resistivity method to landfill leakage detection[J]. Geophysical and Geochemical Exploration, 2011, 35(5):680-683,691.
[6] 邱波, 王斌战, 周世昌, 等. 高密度电法在垃圾填埋场渗滤液调查中的研究[J]. 资源环境与工程, 2020, 34(S2):128-133,176.
doi: 10.16536/j.cnki.issn.1671-1211.2020.S2.022
[6] Qiu B, Wang B Z, Zhou S C, et al. Study on high density electrical method in landfill leachate investigation[J]. Resources Environment & Engineering, 2020, 34(S2):128-133,176.
[7] Kusuyama E, Hidari K, Kamura K. Effectiveness of resistivity monitoring for unsaturated water flow in landfill sites[J]. Journal of Material Cycles and Waste Management, 2020, 22(6):2029-2038.
[8] 王旭明, 马若龙, 刘现锋, 等. 综合物探技术在垃圾填埋场渗漏探测中的应用研究[J]. 工程地球物理学报, 2021, 18(6):903-910.
[8] Wang X M, Ma R L, Liu X F, et al. Application of integrated geophysical prospecting technology in the landfill leakage detection[J]. Chinese Journal of Engineering Geophysics, 2021, 18(6):903-910.
[9] 李晓, 刘志远, 张云鹏, 等. 河北省平原区填埋物污染的电性识别特征[J]. 河北工程大学学报:自然科学版, 2022, 39(2):92-99.
[9] Li X, Liu Z Y, Zhang Y P, et al. Electrical identification characteristics of landfill pollution in Hebei plain area[J]. Journal of Hebei University of Engineering:Natural Science Edition, 2022, 39(2):92-99.
[10] 康方平, 邓岳, 曹创华, 等. 等值反磁通瞬变电磁法在城市生活垃圾填埋场渗漏检测中的应用[J]. 工程地球物理学报, 2023, 20(6):725-732.
[10] Kang F P, Deng Y, Cao C H, et al. Application of opposing coils transient electromagnetic method in leakage detection of urban domestic waste landfills[J]. Chinese Journal of Engineering Geophysics, 2023, 20(6):725-732.
[11] 黄凯, 农观海, 蒋海民, 等. 大定源瞬变电磁法在垃圾填埋场渗漏调查中的应用[J]. 工程地球物理学报, 2023, 20(4):462-470.
[11] Huang K, Nong G H, Jiang H M, et al. Application of large fixed source transient electromagnetic method in landfill seepage investigation[J]. Chinese Journal of Engineering Geophysics, 2023, 20(4):462-470.
[12] Moser C, Binley A, Orozco A F. 3D electrode configurations for spectral induced polarization surveys of landfills[J]. Waste Management, 2023,169:208-222.
[13] Xia T, Meng J, Ding B T, et al. Integration of hydrochemical and induced polarization analysis for leachate localization in a municipal landfill[J]. Waste Management, 2023,157:130-140.
[14] Dagwar P P, Dutta D. Landfill leachate a potential challenge towards sustainable environmental management[J]. Science of the Total Environment, 2024,926:171668.
[15] Ma X M, Zhang J M, Schwartz N, et al. Characterizing landfill extent,composition,and biogeochemical activity using electrical resistivity tomography and induced polarization under varying geomembrane coverage[J]. Geophysics, 2024, 89(4):E151-E164.
[16] 刘崧. 谱激电法[M]. 武汉: 中国地质大学出版社,1998.
[16] Liu S. Spectral induced polarization method[M]. Wuhan: China University of Geosciences Press,1998.
[17] 徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社,1994:178-183.
[17] Xu S Z. FEM in Geophysics[M]. Beijing: Science Press,1994:178-183.
[18] 阮百尧, 熊彬, 徐世浙. 三维地电断面电阻率测深有限元数值模拟[J]. 地球科学, 2001, 26(1):73-77.
[18] Ruan B Y, Xiong B, Xu S Z. Finite element method for modeling resistivity sounding on 3-d geoelectric section[J]. Earth Science, 2001, 26(1):73-77.
[19] Pelton W H, Ward S H, Hallof P G, et al. Mineral discrimination and removal of inductive coupling with multifrequency ip[J]. Geophysics, 2012, 43(3):588-609.
[20] Davis T A, Duff I S. An unsymmetric-pattern multifrontal method for sparse LU factorization[J]. SIAM Journal on Matrix Analysis and Applications, 1997, 18(1):140-158.
[21] 熊彬, 徐志锋, 蔡红柱. MATLAB地球物理科学计算实战[M]. 武汉: 中国地质大学出版社, 2020.
[21] Xiong B, Xu Z F, Cai H Z. MATLAB geophysical science computing[M]. Wuhan: China University of Geosciences Press, 2020.
[22] Rezaeisabzevar Y, Bazargan A, Zohourian B. Landfill site selection using multi criteria decision making:Influential factors for comparing locations[J]. Journal of Environmental Sciences, 2020,93:170-184.
[23] 程志平. 电法勘探教程[M]. 北京: 冶金工业出版社, 2007.
[23] Cheng Z P. Electrical Exploration Tutorial[M]. Beijing: Metallurgical Industry Press, 2007.
[24] 程业勋, 杨进. 环境地球物理学概论[M]. 北京: 地质出版社, 2005.
[24] Cheng Y X, Yang J. An introduction to environmental geophysics[M]. Beijing: Geological Publishing House, 2005.
[25] 赵燕茹, 陈湘生, 黄力平, 等. 垃圾土电阻率特性试验研究[J]. 岩土工程学报, 2015, 37(12):2205-2216.
[25] Zhao Y R, Chen X S, Huang L P, et al. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12):2205-2216.
[1] 林兴龙, 顾观文, 牛兴国, 武晔, 王顺吉, 王英杰, 曹来. 三维断层模型的MT倾子响应数值模拟[J]. 物探与化探, 2025, 49(1): 82-99.
[2] 云龙, 陈苏, 傅磊, 庄海洋, 王驹. 高放废物北山地下实验室硐室群地震动反应特征研究[J]. 物探与化探, 2024, 48(6): 1519-1529.
[3] 常江浩, 薛俊杰, 孟庆鑫, 赵鹏. 煤矿富水体SOTEM响应三维数值模拟研究[J]. 物探与化探, 2024, 48(5): 1176-1184.
[4] 贾波, 张富明, 张利军, 刘皓皓, 郭亮亮, 宋伟, 张朝阳, 何海龙, 王刚. 巷道电性源瞬变电磁响应三维数值模拟[J]. 物探与化探, 2024, 48(5): 1185-1192.
[5] 杨浪邕航, 李红星. 浅地表环境下ESPAC微动成像方法影响因素分析[J]. 物探与化探, 2024, 48(5): 1322-1330.
[6] 刘童, 孙成禹, 蔡瑞乾. 地震面波和P—导波正演模拟与波场分析[J]. 物探与化探, 2024, 48(4): 986-995.
[7] 刘洪华, 张卉, 王汝杰, 于鹏, 秦升强, 李文宇, 车荣祺. 滨海城市地质结构电阻率法三维模拟与应用[J]. 物探与化探, 2024, 48(4): 1037-1044.
[8] 杜惟一, 张冲, 韩华洋, 赵腾腾, 张文艺. 潜山花岗岩裂缝性储层阵列声波测井数值模拟研究[J]. 物探与化探, 2024, 48(2): 514-520.
[9] 宋涛, 包怡, 赵松, 吴建峰, 许元顺, 涂海峰. 井—电联合勘探与三维地质建模在某填埋场环境调查中的应用[J]. 物探与化探, 2024, 48(1): 272-280.
[10] 黄瑶. 基于三维电阻率法的水电工程隧道地质条件探查[J]. 物探与化探, 2024, 48(1): 281-286.
[11] 张雪昂, 杨志超, 李小燕, 董丽媛. 多孔隙度变化倾角裂缝型砂岩铀矿超热中子运移模拟[J]. 物探与化探, 2023, 47(6): 1547-1554.
[12] 杨天春, 胡峰铭, 于熙, 付国红, 李俊, 杨追. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4): 1010-1017.
[13] 曾波, 刘硕, 杨军, 冯德山, 袁忠明, 柳杰, 王珣. 地表起伏对地下管线GPR探测的影响[J]. 物探与化探, 2023, 47(4): 1064-1070.
[14] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[15] 王飞飞, 陈儒军, 李生杰, 申瑞杰, 殷昊, 刘峰海, 彭鑫. 宽带岩矿石标本频谱激电测试仪采集系统研制[J]. 物探与化探, 2022, 46(6): 1454-1462.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com