Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1519-1529    DOI: 10.11720/wtyht.2024.1555
  “高放废物处置”专栏 本期目录 | 过刊浏览 | 高级检索 |
高放废物北山地下实验室硐室群地震动反应特征研究
云龙1,2(), 陈苏3, 傅磊4, 庄海洋5, 王驹1,2()
1.核工业北京地质研究院,北京 100029
2.国家原子能结构高放废物地质处置创新中心,北京 100029
3.北京工业大学 建筑工程学院,北京 100024
4.中国地震局 地球物理研究所,北京 100081
5.华东交通大学 土木工程学院,江西 南昌 330013
Seismic response characteristics of the cavern group of the Beishan underground research laboratory for the geological disposal of high-level radioactive waste
YUN Long1,2(), CHEN Su3, FU Lei4, ZHUANG Hai-Yang5, WANG Ju1,2()
1. Beijing Research Institute of Uranium Geology, Beijing 100029, China
2. CAEA Innovation Center for Geological Disposal of High-Level Radioactive Waste, Beijing 100029, China
3. College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100024
4. Institute of Geophysics, China Earthquake Administration, Beijing 100081, China
5. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, China
全文: PDF(10124 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

高放废物北山地下实验室紧邻的河西走廊和北祁连地区地震环境复杂、强震多发,而地下实验室作为由三竖井+螺旋斜坡道构成的复杂地下结构,具有明显的大尺度空间分布特征,研究地下实验室地下结构群的地震反应特征,对于后期场址的地壳稳定性评价工作具有重要的工程意义。本文根据地下实验室的设计和已有的围岩物理、力学参数,建立了岩体—地下结构体系精细化三维有限元计算模型,开展了关键断裂对地下实验室近场地震安全性影响研究。结果表明:传统的地震动衰减关系难以考虑近场可能存在的有限断层效应、破裂方向性效应和上盘效应等近场震源效应,采用随机有限断层法可以有效地考虑上述近场地震动特性;目标场址场地类型为花岗岩硬基岩场地,近场发震断裂引起的地震动传到场址的反应谱中高频部分发育明显;因地下实验室的非规则结构引起的地下硐室群地震动反应表现出明显的空间变异性,岩体软化带对应地表峰值加速度富集明显,工程中应规避此区域。本次研究为将来高放废物处置库的选址和场址评价提供了地震安全分析方面的依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
云龙
陈苏
傅磊
庄海洋
王驹
关键词 高放废物处置地下实验室地震动断层地震反应数值模拟    
Abstract

The Hexi Corridor and northern Qilian region, adjacent to the Beishan underground research laboratory (URL) for the geological disposal of high-level radioactive waste, exhibit complex seismic environments characterized by frequent strong earthquakes. The Beishan URL, featuring a complex underground structure consisting of three vertical shafts and a spiral ramp, displays significant large-scale spatial distribution characteristics. Investigating the seismic response characteristics of the underground structure group holds great engineering significance for the subsequent assessment of crustal stability at the site. Based on the design of the URL, along with existing physical and mechanical parameters of surrounding rocks, this study established a fine-scale three-dimensional finite element model of the rock mass-underground structure system. Using this model, this study investigated the impacts of key faults on the near-field seismic safety of the URL. The results indicate that traditional seismic attenuation relationships are difficult to consider near-source effects, such as finite fault effects, fracturing directivity effects, and hanging wall effects. In contrast, the stochastic finite-fault method can effectively consider these near-field ground shaking characteristics. The target site exhibits hard granite bedrock, and the response spectra of the earthquakes induced by near-field seismogenic faults, received at the site, display pronounced high-frequency components. Furthermore, the ground shaking of the underground cavern group, caused by the irregular structure of the URL, presents significant spatial variability, with the rock mass softening zone exhibiting a notable accumulation of peak ground acceleration. This zone should be avoided in engineering applications. This study offers a basis for seismic safety analysis for the future site selection and evaluation of the disposal repositories of high-level radioactive waste.

Key wordsunderground research laboratory for the disposal of high-level radioactive waste    ground shaking    fault    seismic response    numerical simulation
收稿日期: 2023-12-21      修回日期: 2024-07-16      出版日期: 2024-12-20
ZTFLH:  O319.56  
基金资助:国防科工局放射性废物处置项目专题“地下实验室场址地壳稳定性分析与评价研究”(FZ2101-6)
通讯作者: 王驹(1964-),男,博士,博士生导师,1984年毕业于南京大学地质学系放射性地质矿产专业,现任中核集团放射性废物处置领域首席专家、北山地下实验室建设工程总设计师,长期从事高放废物地质处置技术研究工作。Email:wangju9818@163.com
引用本文:   
云龙, 陈苏, 傅磊, 庄海洋, 王驹. 高放废物北山地下实验室硐室群地震动反应特征研究[J]. 物探与化探, 2024, 48(6): 1519-1529.
YUN Long, CHEN Su, FU Lei, ZHUANG Hai-Yang, WANG Ju. Seismic response characteristics of the cavern group of the Beishan underground research laboratory for the geological disposal of high-level radioactive waste. Geophysical and Geochemical Exploration, 2024, 48(6): 1519-1529.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1555      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1519
钻孔深度/m 岩性 块体天然密度/
(g·cm-3)
块体干密度/
(g·cm-3)
块体饱和密度/
(g·cm-3)
颗粒密度/
(g·cm-3)
天然含水率/%
112.77~113.59 中粒花岗闪长岩 2.652 2.650 2.653 2.658 0.068
205.74~207.69 中细粒石英闪长岩 2.692 2.691 2.694 2.699 0.059
302.65~309.27 中细粒石英闪长岩 2.682 2.680 2.682 2.687 0.063
417.99~419.92 中粒花岗闪长岩 2.632 2.630 2.633 2.639 0.098
500.40~501.25 中细粒花岗闪长岩 2.646 2.644 2.647 2.651 0.073
548.42~549.22 中细粒花岗闪长岩 2.666 2.665 2.667 2.671 0.058
Table 1  钻孔岩心基本物理性质参数
钻孔深度/m 岩性 纵波波速/
(m·s-1)
横波波速/
(m·s-1)
动态泊松比 动弹性模量/
GPa
动剪切模量/
GPa
动体积模量/
GPa
动拉梅系数/
GPa
112.77~113.59 中粒花岗闪长岩 4990.00 2839.67 0.26 53.88 21.42 37.47 23.19
205.74~207.69 中细粒石英闪长岩 5254.00 2656.33 0.33 50.46 19.03 48.95 36.26
302.65~309.27 中细粒石英闪长岩 5113.00 2802.33 0.28 53.89 21.13 41.94 27.85
417.99~419.92 中粒花岗闪长岩 4895.67 2931.00 0.22 55.17 22.62 32.95 17.87
500.40~501.25 中细粒花岗闪长岩 5103.67 2901.67 0.26 56.20 22.28 39.25 24.39
548.42~549.22 中细粒花岗闪长岩 5251.67 2679.67 0.32 50.63 19.15 48.14 35.37
Table 2  钻孔岩心弹性波速参数
Fig.1  模型区域断层空间分布
a—建模区域;b—入选断层;c—岩体计算模型
Fig.2  区域岩体—断层—地下实验室结构
震级 工况 穿越
F29-1
材料力
学参数
弱化带力学
参数/倍数
震级 工况 穿越
F29-1
材料力
学参数
弱化带力学
参数/倍数
6.5 C1 实际测试数据* 0.3 7.0 C10 实际测试数据 0.3
C2 0.9倍实际测试数据# 0.3 C11 0.9倍实际测试数据 0.3
C3 0.8倍实际测试数据 0.3 C12 0.8倍实际测试数据 0.3
C4 1.1倍实际测试数据 0.3 C13 1.1倍实际测试数据 0.3
C5 0.8倍实际测试数据 0.2 C14 0.8倍实际测试数据 0.2
C6 实际测试数据 0.2 C15 实际测试数据 0.2
C7 实际测试数据 0.5 C16 实际测试数据 0.5
C8 实际测试数据 0.3 C17 实际测试数据 0.3
C9 0.8倍实际测试数据 0.2 C18 0.8倍实际测试数据 0.2
Table 3  模型计算工况
Fig.3  6.5级地震动加速度时程及谱特性
Fig.4  7.0级地震动作用下加速度时程及谱特性
Fig.5  体系内不同时刻加速度分布特性
Fig.6  不同工况下岩体内加速度放大系数
Fig.7  7.0级地震动作用下不同工况地表加速度分布
震级 C1 C2 C3 C4 C5 C6 C7 C8 C9
6.5 4.84 4.48 4.24 5.33 4.70 4.70 4.86 4.83 3.56
震级 C10 C11 C12 C13 C14 C15 C16 C17 C18
7.0 11.40 11.39 9.58 10.90 8.89 10.30 12.42 11.38 8.93
Table 4  不同工况下加速度反应最大值
Fig.8  模型区域岩体—地下结构体系分析选取的特征点及对应的节点编号
Fig.9  不同工况(C1~C14)下地震动传播的谱特性
方向 测点编号
特征点1 特征点2 特征点3 特征点4 特征点5 特征点6 特征点7 特征点8 特征点13 特征点14
x 1.58 1.25 0.64 0.51 0.96 0.93 1.16 0.95 0.74 0.85
y 1.33 0.82 0.52 0.52 0.82 0.92 0.84 0.84 1.07 0.91
z 2.23 1.62 1.29 1.02 1.04 0.95 1.05 1.39 1.27 1.19
方向 测点编号
特征点16 特征点17 特征点18 特征点19 特征点20 特征点22 特征点24 特征点25 特征点26
x 0.45 0.48 0.86 0.63 0.87 1.18 1.19 1.05 0.50
y 0.51 0.57 0.70 0.48 0.89 0.87 0.83 1.08 0.54
z 0.80 0.82 0.97 0.80 1.39 1.54 1.67 1.88 0.86
Table 5  6.5级地震动作用下工况C8下斜坡道放大系数
方向 特征点
特征点1 特征点2 特征点3 特征点4 特征点5 特征点6 特征点7 特征点8 特征点13 特征点14
x 1.52 1.17 0.70 0.50 0.73 0.74 1.07 1.00 0.99 0.93
y 1.94 1.07 0.68 0.60 1.22 1.48 1.46 1.37 1.20 1.21
z 2.10 1.56 1.08 0.73 0.89 0.97 1.48 1.45 1.40 1.00
方向 特征点
特征点16 特征点17 特征点18 特征点19 特征点20 特征点22 特征点24 特征点25 特征点26
x 0.51 0.58 0.93 0.68 1.18 0.94 0.87 0.98 0.61
y 0.58 0.53 1.03 1.05 1.17 1.36 1.49 1.07 0.68
z 0.74 0.77 1.07 0.69 1.14 1.40 1.37 1.48 0.63
Table 6  7.0级地震动作用下工况C17下斜坡道放大系数
[1] Kickmaier W, Mckinley I. A review of research carried out in European rock laboratories[J]. Nuclear Engineering and Design, 1997, 176(1/2):75-81.
[2] Zhang C L, Wang J, Su R. Concepts and tests for disposal of radioactive waste in deep geological formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4):750e68.
[3] 王驹, 陈伟明, 苏锐, 等. 高放废物地质处置及其若干关键科学问题[J]. 岩石力学与工程学报, 2006, 25(4):801-802.
[3] Wang J, Chen W M, Su R, et al. Geology disposal of high-level radioactive waste and its key scientific issues[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4):801-812.
[4] Wang J. High-level radioactive waste disposal in China:Update 2010[J]. Journal of Rock Mechanics and Geotechnical Engineering 2010, 2(1):1-11.
[5] Uenishi K, Sakurai S. Characteristic of the vertical seismic waves associated with the 1995 Hyogo-ken Nanbu (Kobe),Japan earthquake estimated from the failure of the Daikai Underground Station[J]. Earthquake Engineering and Structural Dynamics, 2000, 29(6):813-822.
[6] Tsinidis G, Silva F D, Snastasopoulo I, et al. Seismic behaviour of tunnels:From experiments to analysis[J]. Tunnelling and Underground Space Technology, 2020, 5:99.
[7] 张雨霆, 肖明, 李玉婕. 汶川地震对映秀湾水电站地下厂房的震害影响及动力响应分析[J]. 岩石力学与工程学报, 2010, 29(2):3663-3671.
[7] Zhang Y T, Xiao M, Li Y J. Effect of earthquake on earthquake damage and dynamic response analysis of underground powerhouse of Yingxiuwan Hydropower Station[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2):3663-3671.
[8] 杜修力, 蒋家卫, 许紫刚, 等. 浅埋矩形框架地铁车站结构抗震性能指标标定研究[J]. 土木工程学报, 2019, 52(10):111-119,128.
[8] Du X L, Jiang J W, Xu Z G, et al. Study on quantification of seismic performance index for rectangular frame subway station structure[J]. China Civil Engineering Journal, 2019, 52 (10):111-119,128.
[9] 刘晶波, 王文晖, 赵冬冬, 等. 复杂断面地下结构地震反应分析的整体式反应位移法[J]. 土木工程学报, 2014, 47(1):134-142.
[9] Liu J B, Wang W G, Zhao D D, et al. Integral response deformation method in seismic analysis of complex section underground structures[J]. China Civil Engineering Journal, 2014, 47(1):134-142.
[10] Yuan Y, Yu H T, Chen Z Y. Evaluation of seismic calculation methods for shallow-buried frame structures in soft soil[J]. Journal of Vibration & Shock, 2009, 28(8):50-56.
[11] Zhang H Y, Zhao C, Chen S, et al. Seismic performance of underground subway station with sliding between column and longitudinal beam-Science Direct[J]. Tunnelling and Underground Space Technology, 2020, 102:103439.
[12] 何川, 耿萍. 强震活动断裂带铁路隧道建设面临的挑战与对策[J]. 中国铁路, 2020, 702(12):65-72.
[12] He C, Geng P. Challenges and countermeasures of railway tunnel construction in macroseismic active fault zone[J]. China Railway, 2020, 702(12):65-72
[13] 崔臻, 盛谦, 冷先伦, 等. 地下洞室地震动力响应的岩体结构控制效应[J]. 岩土力学, 2018, 39(5):274-287.
[13] Cui Z, Sheng Q, Leng X L, et al. Control effect of large geological discontinuity on seismic response and stability of underground rock caverns[J]. Rock and Soil Mechanics, 2018, 39(5):274-287.
[14] Hashash Y M A., Park D, Yao J I C. Ovaling deformations of circular tunnels under seismic loading,an update on seismic design and analysis of underground structures[J]. Tunn. Undergr. Space Technol, 2005, 20 (5),435-441.
[15] Coigliano M, Scandella L, Lai C G, et al. Seismic analysis of deep tunnels in near fault conditions:A case study in Southern Italy[J]. Bulletin of Earthquake Engineering, 2011, 9(4):975-995.
[16] Wang J, Chen L, Su R, et al. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China:Planning,site selection,site characterization and in situ tests[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(3):411-435.
[17] Ungless R F. An infinite finite element[D]. Vancouver: University of British Columbia, 1973.
[18] Bettess P. More on infinite element[J]. International Journal for Numerical Methods in Engineering, 2010, 15(11):1613-1626.
[19] Beer G, Meek J L. Infinite domain element[J]. International Journal for Numerical Methods in Engineering, 1981, 17(1):43-52.
[20] 陈继峰, 赵翠萍, 杨立明. 甘肃地区S波非弹性衰减Q值研究[J]. 地震, 2010, 30(1):125-130.
[20] Chen J F, Zhao C P, Yan G L M. Q values of S wave inelastic attenuation in Gansu Region[J]. Earthquake, 2010, 30(1):125-130
[21] 陈继峰, 杨立明. 甘肃地区震源参数的相关性研究[J]. 地震地磁观测与研究, 2011, 32(1):10-14.
[21] Chen J F, Yang L M. Study on source parameters and its similar relationship of earthquakes occurred in Gansu region[J]. Seismological and geomagnetic observation and research, 2011, 32(1):10-14
[1] 常江浩, 薛俊杰, 孟庆鑫, 赵鹏. 煤矿富水体SOTEM响应三维数值模拟研究[J]. 物探与化探, 2024, 48(5): 1176-1184.
[2] 贾波, 张富明, 张利军, 刘皓皓, 郭亮亮, 宋伟, 张朝阳, 何海龙, 王刚. 巷道电性源瞬变电磁响应三维数值模拟[J]. 物探与化探, 2024, 48(5): 1185-1192.
[3] 姚铭. 基于构造导向滤波处理的断层提取技术及其应用[J]. 物探与化探, 2024, 48(5): 1313-1321.
[4] 杨浪邕航, 李红星. 浅地表环境下ESPAC微动成像方法影响因素分析[J]. 物探与化探, 2024, 48(5): 1322-1330.
[5] 刘童, 孙成禹, 蔡瑞乾. 地震面波和P—导波正演模拟与波场分析[J]. 物探与化探, 2024, 48(4): 986-995.
[6] 刘洪华, 张卉, 王汝杰, 于鹏, 秦升强, 李文宇, 车荣祺. 滨海城市地质结构电阻率法三维模拟与应用[J]. 物探与化探, 2024, 48(4): 1037-1044.
[7] 杜惟一, 张冲, 韩华洋, 赵腾腾, 张文艺. 潜山花岗岩裂缝性储层阵列声波测井数值模拟研究[J]. 物探与化探, 2024, 48(2): 514-520.
[8] 黄瑶. 基于三维电阻率法的水电工程隧道地质条件探查[J]. 物探与化探, 2024, 48(1): 281-286.
[9] 张雪昂, 杨志超, 李小燕, 董丽媛. 多孔隙度变化倾角裂缝型砂岩铀矿超热中子运移模拟[J]. 物探与化探, 2023, 47(6): 1547-1554.
[10] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[11] 柴伦炜. 井间超高密度电法探测基桩的模拟及应用[J]. 物探与化探, 2022, 46(5): 1283-1288.
[12] 肖世鹏, 熊高君, 袁梦雨, 毛明秋, 王胜艺, 韦增涛. 黏声波高阶傅里叶有限差分法参数优化成像[J]. 物探与化探, 2022, 46(5): 1207-1213.
[13] 苏林帅, 蔡明, 郑占树, 徐宝宝, 罗居森, 胡燕杰, 张荆宇. 井眼扩径对水平井声波测井响应影响的数值模拟[J]. 物探与化探, 2022, 46(2): 467-473.
[14] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[15] 肖妍姗, 周正华, 苏杰, 魏鑫. 地表水平正反敲击激振下孔法剪切波速测试理论依据讨论[J]. 物探与化探, 2021, 45(5): 1288-1294.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com