Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (4): 1010-1017    DOI: 10.11720/wtyht.2023.1424
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
天然电场选频法的响应特性分析与应用
杨天春1(), 胡峰铭1, 于熙1, 付国红1, 李俊2, 杨追3
1.湖南科技大学 地球科学与空间信息工程学院,湖南 湘潭 411201
2.湖南省核地质调查所,湖南 长沙 410007
3.湖南普奇地质勘探设备研究院,湖南 长沙 410000
Analysis and application of the responses of the frequency selection method of telluric electricity field
YANG Tian-Chun1(), HU Feng-Ming1, YU Xi1, FU Guo-Hong1, LI Jun2, YANG Zhui3
1. School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
2. Nuclear Geological Survey of Hunan, Changsha 410007, China
3. Hunan Puqi Geologic Exploration Equipment Institute, Changsha 410000, China
全文: PDF(1964 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

静态效应是频率域电磁法应用中不可避免的一种物理现象,通常通过校正方法进行压制或消除。本文提出一种直接利用天然电磁法的静态效应进行浅部电性异常体勘探的新思路,利用天然电场选频法(FSM)能够测量天然交变电磁场在地表所产生的几个不同频率的水平电场分量来研究地下介质的电性变化。首先采用二维有限单元法对FSM开展正演模拟,模拟结果表明:当近地表存在低阻异常体时,地表沿测线方向的水平电场分量曲线与FSM实测曲线形态相同,在低阻体的上方出现十分明显的低电位异常;当计算的频率点增多时,电场分量剖面曲线及其拟断面图会出现静态偏移现象,发现FSM异常实质上主要是静态效应所致。FSM实践应用成果及钻井验证结果表明,当有地下水存在时,FSM实测的剖面曲线及拟断面图会出现明显的静态效应现象,且与CSAMT的勘探成果一致。通过理论与实践可知,直接利用天然电磁场的电场分量开展浅部电性异常体的勘探具有可行性,今后也可利用频率域电磁法的静态效应现象开展浅层地质勘探。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨天春
胡峰铭
于熙
付国红
李俊
杨追
关键词 地球物理勘探静态效应法可控源音频大地电磁测深有限单元法天然电场选频法地下水    
Abstract

As an inevitable physical phenomenon in the application of frequency-domain electromagnetics, the static shift effect is generally suppressed or eliminated by correction. This study proposed a new approach of directly utilizing the static shift effect of natural electromagnetic methods to explore shallow electrical anomalies. The frequency selection method of telluric electricity field (FSM) is to study the variations in electrical properties of subsurface media by measuring several horizontal electric field components with different frequencies generated on the surface by the natural alternating electromagnetic field. In this study, the forward modeling of FSM data was conducted using the two-dimensional finite element method. The modeling results are shown as follows: (1) In the case of low-resistivity anomalies near the surface, the curves of horizontal electric field components along the survey line on the surface showed the same morphologies as the FSM-derived curves, with significant low-potential anomalies above the low-resistivity anomalies; (2) As the calculated frequencies increased, both the profile curves and the pseudosection map of electric field components exhibited a static shift effect, indicating that the FSM-derived anomalies were mainly caused by the static shift effect. Both the FSM application results and the drilling verification results showed that with the presence of groundwater, the FSM-derived profile curves and pseudosection map exhibited a significant static shift effect, which was consistent with the CSAMT exploration results. As indicated by theoretical and practical research, it is feasible to directly use the components of the telluric electricity field for the exploration of shallow electrical anomalies. Moreover, shallow geological exploration can be conducted by utilizing the static shift effect of the frequency domain electromagnetics.

Key wordsgeophysical exploration    static shift effect    CSAMT    finite element method    FSM    groundwater
收稿日期: 2022-08-29      修回日期: 2023-02-27      出版日期: 2023-08-20
ZTFLH:  P631.1  
  P641.7  
基金资助:国家自然科学基金项目(42074219)
作者简介: 杨天春(1968-),男,教授,博士,主要从事物探方面的教学与科研工作。Email: ytc6803@163.com
引用本文:   
杨天春, 胡峰铭, 于熙, 付国红, 李俊, 杨追. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4): 1010-1017.
YANG Tian-Chun, HU Feng-Ming, YU Xi, FU Guo-Hong, LI Jun, YANG Zhui. Analysis and application of the responses of the frequency selection method of telluric electricity field. Geophysical and Geochemical Exploration, 2023, 47(4): 1010-1017.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1424      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I4/1010
Fig.1  二维地电模型与坐标系
Fig.2  层状介质中的异常体模型1
Fig.3  模型1的模拟计算结果
Fig.4  层状介质中的异常体模型2
Fig.5  模型2的模拟计算结果
Fig.6  选频法在充水岩溶上的探测成果[12]
Fig.7  鸳鸯草场地下水勘探成果
[1] 底青云, 朱日祥, 薛国强, 等. 我国深地资源电磁探测新技术研究进展[J]. 地球物理学报, 2019, 62(6):2128-2138.
[1] Di Q Y, Zhu R X, Xue G Q, et al. New development of the electromagnetic (EM) methods for deep exploration[J]. Chinese Journal of Geophysics, 2019, 62(6):2128-2138.
[2] Zonge K L. Comparison of time,frequency and phase measurement in IP[J]. Geophysical Prospecting, 1972, 20:626-648.
doi: 10.1111/gpr.1972.20.issue-3
[3] Jones A G. Static shift of magnetotelluric data and its removal in a sedimentary basin environment[J]. Geophysics, 1988, 53(7):967-978.
doi: 10.1190/1.1442533
[4] Kaufman A A. Reduction of the geological noise in magnetotelluric sounding[J]. Geoexploration, 1988, 25:145-161.
doi: 10.1016/0016-7142(88)90010-5
[5] Zonge K L, Hughes L J. Controlled source audio-frequency magnetotellurics[M]// Nabighian M N. Electromagnetic Methods: Theory and Practice, Society of Exploration Geophysicists, 1988.
[6] Andrieux P, Wightman W E. The so-called static corrections in magnetotelluric measurements[C]// 54th Ann. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1984:43-44.
[7] Sternberg B K, Washburne J C, Pellerin L. Correction for the static shift in magnetotellurics using transient electromagnetic soundings[J]. Geophysics, 1988, 53:1459-1468.
doi: 10.1190/1.1442426
[8] 陈清礼, 张翔, 胡文宝. 南方碳酸盐岩区大地电磁测深曲线静态偏移校正[J]. 江汉石油学院学报, 1999, 21(3):30-32.
[8] Chen Q L, Zhang X, Hu W B. Static migration correction of magnetotelluric sounding curve in carbonate area of South China[J]. Journal of Jianghan Petroleum Institute, 1999, 21(3):30-32.
[9] 杨生, 鲍光淑, 李爱勇. MT法中静态效应及阻抗张量静态校正法[J]. 中南工业大学学报, 2002, 33(1):8-13.
[9] Yang S, Bao G S, Li A Y. The static migration to MT data and the impedance tensor static correction method[J]. Journal of CentralSouth University of Technology, 2002, 33(1):8-13.
[10] 邱卫忠, 闫述, 薛国强, 等. CSAMT的各分量在山地精细勘探中的作用[J]. 地球物理学进展, 2011, 26(2):664-668.
[10] Qiu W Z, Yan S, Xue G Q, et al. Action of CSAMT field components in mountainous fine prospecting[J]. Progress in Geophysics, 2011, 26(2):664-668.
[11] 于生宝, 郑建波, 高明亮, 等. 基于小波变换模极大值法和阈值法的CSAMT静态校正[J]. 地球物理学报, 2017, 60(1):360-368.
[11] Yu S B, Zheng J B, Gao M L, et al. CSAMT static correction method based on wavelet transform modulus maxima and thresholds[J]. Chinese Journal of Geophysics, 2017, 60(1):360-368.
[12] 杨天春, 夏代林, 王齐仁, 等. 天然电场选频法理论研究与应用[M]. 长沙: 中南大学出版社, 2017.
[12] Yang T C, Xia D L, Wang Q R, et al. Theoretical research and application of frequency selection method for telluric electricity field[M]. Changsha: Central South University Press, 2017.
[13] 杨杰. 游散电流法在岩溶地区的试验成果及理论研究[J]. 物探与化探, 1982, 6(1):41-54.
[13] Yang J. Experimental results and theoretical study of the stray current method in karst area[J]. Geophysical and Geochemical Exploration, 1982, 6(1):41-54.
[14] 林君琴, 雷长声, 董启山. 天然低频电场法[J]. 长春地质学院学报, 1983, 13(2):114-126.
[14] Lin J Q, Lei C S, Dong Q S. The natural low frequency electric field method[J]. Journal of Jilin University, 1983, 13(2):114-126.
[15] 杨天春, 陈卓超, 梁竞, 等. 天然电场选频测深法在地下水勘探中的异常理论分析与实践应用[J]. 地学前缘, 2020, 27(4):302-310.
doi: 10.13745/j.esf.sf.2020.6.34
[15] Yang T C, Chen Z C, Liang J, et al. Theoretical analysis of sounding anomaly and field application of the natural electric field frequency selection sounding method in groundwater exploration[J]. Earth Science Frontiers, 2020, 27(4):302-310.
doi: 10.13745/j.esf.sf.2020.6.34
[16] Yang T C, Gao Q S, Li H, et al. New insights into the anomaly genesis of the frequency selection method:Supported by numerical modeling and case studies[J]. Pure and Applied Geophysics, 2023. http://doi.org/10.1007/s00024-022-03220-8
[17] Ren Z, Kalscheuer T, Greenhalgh S, et al. A goal-oriented adaptive finite-element approach for plane wave 3-D electromagnetic modeling[J]. Geophysical Journal International, 2013, 194(2):700-718.
doi: 10.1093/gji/ggt154
[18] 杨天春, 张正发, 许德根, 等. 花岗岩地区浅部地下水井位的快速确定[J]. 水文地质工程地质, 2017, 44(5):20-24,32.
[18] Yang T C, Zhang Z F, Xu D G, et al. Fast determination of shallow groundwater wells in a granite area[J]. Hydrogeology & Engineering Geology, 2017, 44(5):20-24,32.
[19] 王汪汪. 可控源音频大地电磁法二维各向异性正演研究[D]. 北京: 中国地质大学, 2017.
[19] Wang W W. Controlled-source audio-frequency magnetotelluric two-dimensional modeling for arbitrary anisotropy structures[D]. Beijing: China University of Geosciences (Beijing), 2017.
[1] 范海印, 宋蕊蕊, 于林松, 滕永波, 万方, 张秀文, 李圣玉, 赵闯. 鲁西北地区某典型化工园区地下水重金属污染特征及健康风险评价[J]. 物探与化探, 2023, 47(5): 1326-1335.
[2] 曾波, 刘硕, 杨军, 冯德山, 袁忠明, 柳杰, 王珣. 地表起伏对地下管线GPR探测的影响[J]. 物探与化探, 2023, 47(4): 1064-1070.
[3] 张昭, 殷全增, 张龙飞, 张大明, 张世晖, 黄国疏, 赵石峰, 杨彪, 台立勋, 张灯亮, 王进朝, 段刚. 综合物探技术在深部碳酸盐岩热储探测中的应用研究——以雄安新区为例[J]. 物探与化探, 2023, 47(4): 926-935.
[4] 李开富, 马欢, 张艳, 李威龙, 姜纪沂, 黄斌, 章龙管, 秦孟博. 基于时移电阻率法的平谷局部地区地下水时空特征研究[J]. 物探与化探, 2023, 47(4): 1002-1009.
[5] 张志, 徐洪苗, 钱家忠, 谢杰, 陈皓龙, 朱紫祥. 综合物探方法在矿泉水勘查中的应用——以泾县榔桥地区为例[J]. 物探与化探, 2023, 47(3): 690-699.
[6] 王仕兴, 何可, 尹小康, 魏栋华, 赵思为, 郭明. 半航空瞬变电磁一维聚焦反演研究[J]. 物探与化探, 2023, 47(2): 410-419.
[7] 孙海川. 兰州新区西部恐龙园区块地热地质条件分析[J]. 物探与化探, 2022, 46(6): 1411-1418.
[8] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[9] 申月芳, 马晗宇, 杨耀栋, 曹阳. 武清凹陷浅层含氟地下水演化特点及成因分析[J]. 物探与化探, 2021, 45(2): 528-535.
[10] 刘俊峰, 程云涛, 邓志强, 周芳春, 曹创华, 刘翔, 曾美强, 李杰, 黄志彪, 陈虎. CSAMT与AMT数据“拼接”处理——以湖南仁里铌钽矿床7号剖面为例[J]. 物探与化探, 2021, 45(1): 68-75.
[11] 屈利军, 王庆, 李波, 姚伟. 综合物探方法在湖南香花岭矿田三合圩矿区深部成矿规律研究中的应用[J]. 物探与化探, 2020, 44(6): 1313-1321.
[12] 武建平, 张超, 陈剑平, 杨玺, 裴运军, 周庆东. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020, 44(5): 1066-1072.
[13] 邬健强, 赵茹玥, 甘伏平, 张伟, 刘永亮, 朱超强. 综合电法在岩溶山区地下水勘探中的应用——以湖南怀化长塘村为例[J]. 物探与化探, 2020, 44(1): 93-98.
[14] 孙海川, 刘永亮, 邵程龙. 综合物探在海石湾地区地热勘查中的应用[J]. 物探与化探, 2019, 43(2): 290-297.
[15] 黄国民, 李世平, 陶毅, 杨承丰, 曾庆仕. 广西碎屑岩地区电法找水实例[J]. 物探与化探, 2019, 43(1): 77-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com