Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (6): 1454-1462    DOI: 10.11720/wtyht.2022.1469
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
宽带岩矿石标本频谱激电测试仪采集系统研制
王飞飞1,2(), 陈儒军1,2,3,4(), 李生杰1,2, 申瑞杰1,2, 殷昊1,2, 刘峰海1,2, 彭鑫1,2
1.中南大学 地球科学与信息物理学院,湖南 长沙 410083
2.中南大学 AIoT(人工智能物联网)与地质地球物理创新创业教育中心,湖南 长沙 410083
3.有色资源与地质灾害探查湖南省重点实验室,湖南 长沙 410083
4.有色金属成矿预测与地质环境检测教育部重点实验室,湖南 长沙 410083
Development of the acquisition system of a broadband spectral induced polarization testers for rock and ore samples
WANG Fei-Fei1,2(), CHEN Ru-Jun1,2,3,4(), LI Sheng-Jie1,2, SHEN Rui-Jie1,2, YIN Hao1,2, LIU Feng-Hai1,2, PENG Xin1,2
1. School of Geosciences and Info-physics, Central South University, Changsha 410083, China
2. AIoT Innovation and Entrepreneurship Education Center for Geology and Geophysics, Central South University, Changsha 410083, China
3. Hunan Key Laboratory of Nonferrous Resources and Geological Disaster Exploration, Changsha, 410083, China
4. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Changsha 410083, China
全文: PDF(4168 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

采集系统对于岩矿石标本频谱激电测试仪来说至关重要,其性能好坏直接决定了仪器的精度、功耗、采样率、信噪比等,因此,设计出高输入阻抗、高采样率、高精度、低噪音、低功耗的采集系统是整个仪器研制的重点和难点。本文依据四极法测量原理,针对宽频带岩矿石标本频谱激电测试,设计出一款集成了4个采集通道的采集系统。采集系统采用24位ADC芯片AD7760实现A/D转换,采用AD9837芯片产生正弦波形,实现仪器自检,使用型号为XC6SLX25的FPGA芯片实现对采集系统的控制。系统测试结果表明,本采集系统的输入阻抗大于1 TΩ,实现了0.4%的测量精度,最高2.5 MHz的采样速率,1 Hz ~ 200 kHz的仪器带宽,各采样通道短路噪声均低于1 mV,支持1/5/25/125倍可调增益,信号源支持恒压恒流模式切换,恒压有1 mV、10 mV、100 mV、1 V、10 V共5档可选,恒流有1 μA、10 μA、100 μA、1 mA、10 mA共5档可选。本研究开发的硬件系统可以满足岩矿石标本宽频带频谱激电测试需要。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王飞飞
陈儒军
李生杰
申瑞杰
殷昊
刘峰海
彭鑫
关键词 采集系统频谱激电法高采样率低噪音高精度    
Abstract

The acquisition system is a very important part of a broadband spectral induced polarization (SIP) tester for rock and ore samples. Its performance directly determines the precision, power consumption, sampling rate, and signal-to-noise ratio of the tester. Therefore, it is a focus and challenge throughout the development of a tester to design an acquisition system with high input impedance, a high sampling rate, high precision, low noise, and low power consumption. Based on the principle of the quadrupole method, this study designed an acquisition system of a SIP tester that integrates four acquisition channels. The acquisition system uses the 24-bit ADC chip AD7760 to realize A/D conversion, uses the AD9837 chip to generate sine waveforms for self-check of the tester, and uses the FPGA chip of the model XC6SLX25 to control the acquisition system. The test results of the system are as follow. The acquisition system has input impedance greater than 1 TΩ, survey precision of 0.4%, a sampling rate of up to 2.5 MHz, and a bandwidth of 1~200 kHz. Each sampling channel of the acquisition system has short-circuit noise less than 1 mV and supports 1/5/25/125 times adjustable gain. The voltage and current of the signal source can be switched among 1 mV, 10 mV, 100 mV, 1 V, and 10 V and 1 μA, 10 μA, 100 μA, 1 mA, and 10 mA, respectively. The hardware acquisition system developed in this study can meet the needs for broadband SIP tests of rock and ore samples.

Key wordsacquisition system    spectral induced polarization method    high sampling rate    low noise    high precision
收稿日期: 2021-08-24      修回日期: 2022-05-30      出版日期: 2022-12-20
ZTFLH:  P631  
基金资助:国家自然科学基金基础中心项目(72088101)
通讯作者: 陈儒军
作者简介: 王飞飞(1998-),女,硕士研究生,主要研究方向为电法、瞬变电磁法仪器研制。Email:wangff@csu.edu.cn
引用本文:   
王飞飞, 陈儒军, 李生杰, 申瑞杰, 殷昊, 刘峰海, 彭鑫. 宽带岩矿石标本频谱激电测试仪采集系统研制[J]. 物探与化探, 2022, 46(6): 1454-1462.
WANG Fei-Fei, CHEN Ru-Jun, LI Sheng-Jie, SHEN Rui-Jie, YIN Hao, LIU Feng-Hai, PENG Xin. Development of the acquisition system of a broadband spectral induced polarization testers for rock and ore samples. Geophysical and Geochemical Exploration, 2022, 46(6): 1454-1462.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1469      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I6/1454
Fig.1  四极法工作原理示意
Fig.2  SIP测试仪构成
Fig.3  采集卡整体设计
Fig.4  AD7760功能框
Fig.5  AD7760与FPGA的引脚连接
Fig.6  自检电路工作示意
Fig.7  FPGA内主要模块结构
Fig.8  电源模块划分
Fig.9  采集卡实物
Fig.10  四通道短路噪声曲线
Fig.11  通道1在不同采样率下的短路输入噪声
测试频点 串联1 GΩ电阻 串联10 GΩ电阻 未串联电阻
输入电压 输出电压 输入电压 输出电压 输入电压 输出电压
10 Hz 1.01 1.01 1.01 1.01 1.01 1.01
100 Hz 1.01 1.01 1.01 1.01 1.01 1.01
1 kHz 1.01 1.01 1.01 1.01 1.01 1.01
10 kHz 1.03 1.03 1.03 1.03 1.03 1.03
100 kHz 1.04 1.03 1.04 1.03 1.03 1.03
200 kHz 1.04 1.01 1.04 1.01 1.04 1.01
400 kHz 1.04 0.883 1.04 0.884 1.04 0.883
600 kHz 1.04 0.673 1.04 0.674 1.04 0.673
800 kHz 1.04 0.543 1.04 0.545 1.04 0.542
1 MHz 1.04 0.468 1.05 0.470 1.04 0.467
Table 1  输入阻抗测试结果
Fig.12  电阻模型
Fig.13  原理样机和LCR电桥的测量结果
标本编号 类型 长/cm 宽/cm 高/cm
02-6 大理岩 4.4 3.6 6.5
4000-19 铅锌矿 3.7 3.7 4.0
Table 2  岩矿石标本参数
Fig.14  岩矿石标本实物
Fig.15  岩矿石标本测量结果
[1] 杨振威, 郑伟, 李晓斌, 等. 频谱激电法的发展与展望[J]. 物探与化探, 2015, 39(1):22-28.
[1] Yang Z W, Zheng W, Li X B, et al. The development and prospect of the spectrum induced polarization method[J]. Geophysical and Geochemical Exploration, 2015, 39(1): 22-28.
[2] 蔡运胜, 尹洪岩, 张进国, 等. 激发极化法工作原理方法及应用效果探讨[J]. 矿产勘查, 2012, 3(2):212-218.
[2] Cai Y S, Yin H Y, Zhang J G, et al. Discussion on the principle, method and application effect of induced polarization method[J]. Mineral Exploration, 2012, 3(2): 212-218.
[3] 米宏泽. 地球物理勘查仪器研发新成果及国产品牌化发展研究[J]. 矿产勘查, 2018, 9(3):413-419.
[3] Mi H Z. New achievements in the development and studies on geophysical exploration instrumentation and developmental research domestic brands[J]. Mineral Exploration, 2018, 9(3):413-419.
[4] 雷闯, 陈志强, 张浩然, 等. 复电阻率法在油气勘探中的应用[J]. 中国石油和化工标准与质量, 2020, 40(1):127-128.
[4] Lei C, Chen Z Q, Zhang H R, et al. Application of complex resistivity method in oil and gas exploration[J]. China Petroleum and Chemical Standards and Quality, 2020, 40(1): 127-128.
[5] 雷闯. 复电阻率法在涪陵地区页岩气勘探中的试验[C]// 中国石油学会2015年物探技术研讨会论文集, 2015.
[5] Lei C. Test of complex resistivity method in shale gas exploration in Fuling area[C]// Proceedings of 2015 Geophysical Prospecting Technology Seminar of China Petroleum Institute, 2015.
[6] 邓春来. 大地电磁测深及大功率复电阻率法在地热勘探中的应用[C]// 中国资源综合利用协会第三届中国国际环保、能源和资源综合利用博览会暨2008’中国节能减排与资源综合利用论坛地热能开发利用分论坛暨热泵技术应用交流会论文集, 2008.
[6] Deng C L. Application of magnetotelluric sounding and high-power complex resistivity method in geothermal exploration[C]// China Resources Comprehensive Utilization Association,the 3rd China International Environmental Protection, Energy and Resource Comprehensive Utilization Expo 2008' China Energy Conservation, Emission Reduction and Comprehensive Utilization of Resources Forum Geothermal Energy Development and Utilization Sub-forum and Proceedings of Heat Pump Technology Application Exchange Conference, 2008.
[7] 武斌, 邹俊, 马代海, 等. 频谱激电法在天然气水合物勘查中的应用[J]. 四川地质学报, 2016, 36(1):135-138.
[7] Wu B, Zou J, Ma D H, et al. Application of spectrum induced polarization method in natural gas hydrate exploration[J]. Journal of Sichuan Geology, 2016, 36(1): 135-138.
[8] 孙萍. 可控源音频大地电磁和频谱激电测深在某矿产勘查中的应用[J]. 世界有色金属, 2018(12):162-164.
[8] Sun P. The application of controllable source audio magnetotelluric and spectral IP sounding in a mineral exploration[J]. World Nonferrous Metals, 2018(12):162-164.
[9] 罗传华, 昌彦君, 李志华, 等. 频谱激电法在铜陵市某滑坡地段滑动面勘探中的应用[J]. 工程地球物理学报, 2017, 14(1),26-30.
[9] Luo C H, Chang Y J, Li Z H, et al. Application of spectrum induced polarization method in the exploration of sliding surface in a landslide section in Tongling City[J]. Journal of Engineering Geophysics, 2017, 14(1), 26-30.
doi: 10.1088/1742-2132/14/1/26
[10] 朱勇. 铬污染场地复电阻率法时频域联合探测技术研究[D]. 北京: 中国矿业大学(北京), 2013.
[10] Zhu Y. Research on time-frequency joint detection technology of complex resistivity method in chromium contaminated sites[D]. Beijing: China University of Mining and Technology (Beijing), 2013.
[11] 陈皓. 频谱激电法接收机的研制[D]. 北京: 中国地质大学(北京), 2019.
[11] Chen H. Development of a spectrum IP method receiver[D]. Beijing: China University of Geosciences (Beijing), 2019.
[12] 孙旭. 岩石激发极化与复电阻率频谱综合研究[D]. 北京: 中国石油大学(北京), 2018.
[12] Sun X. Comprehensive study of rock induced polarization and complex resistivity spectrum[D]. Beijing: China University of Petroleum (Beijing), 2018.
[13] 王庆乙, 代丽, 邱刚. 我国激电法测量系统的失误与弥补措施[J]. 物探与化探, 2013, 37(6):1031-1033.
[13] Wang Q Y, Dai L, Qiu G. Errors and remedies of the IP measurement system in my country[J]. Geophysical and Geochemical Exploration, 2013, 37(6): 1031-1033.
[14] 吴宇豪, 李京谋, 李桐林, 等. 一种利用频谱激电数据实部和虚部加权反演Cole-Cole模型参数的方法[J]. 地球物理学进展, 2017, 32(2):753-761.
[14] Wu Y H, Li J M, Li T L, et al. A method for weighted inversion of the Cole-Cole model parameters using the real and imaginary parts of spectral IP data[J]. Progress in Geophysics, 2017, 32(2) :753-761.
[15] Binley A, Slater L D, Fukes M, et al. Relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone[J]. Water Resources Research, 2005, 41(12).
[16] Revil A. Spectral induced polarization of shaly sands: Influence of the electrical double layer[J]. Water Resources Research, 2012, 48(2):W02517(1-23).
[17] Johansson S, Lindskog A, Fiandaca G, et al. Spectral induced polarization of limestones: time domain field data, frequency domain laboratory data and physicochemical rock properties[J]. Geophysical Journal International, 2020, 220(2): 928-950.
[18] Lesmes D P, Frye K M. Influence of pore fluid chemistry on the complex conductivity and induced polarization responses of Berea sandstone[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B3): 4079-4090.
[19] Zimmermann E, Kemna A, Berwix J, et al. A high-accuracy impedance spectrometer for measuring sediments with low polarizability[J]. Measurement Science & Technology, 2008, 19(10):105603( 1-9).
[20] 杨迪. 天然岩矿石复电阻率测量及频谱曲线特征研究[D]. 北京: 中国地质大学(北京), 2019.
[20] Yang D. Natural rock ore complex resistivity measurement and spectral curve characteristics research[D]. Beijing: China University of Geosciences (Beijing), 2019.
[1] 耿涛. 地面高精度磁测野外工作中仪器校正点使用的常见问题及应对方法[J]. 物探与化探, 2023, 47(4): 1078-1082.
[2] 刘云祥, 司华陆, 乔海燕, 刘百川. 中国油气重磁勘探技术进步与展望[J]. 物探与化探, 2023, 47(3): 563-574.
[3] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[4] 石加玉, 郭鹏, 李勇. 频谱激电测量仪器关键技术研究及实现[J]. 物探与化探, 2021, 45(6): 1475-1481.
[5] 崔志强, 胥值礼, 李飞. 塔西南高精度航磁油气地质构造调查[J]. 物探与化探, 2021, 45(4): 846-858.
[6] 游军, 张小明, 罗乾周, 史朝洋, 杨运军, 陈剑祥, 袁攀. 略阳白雀寺杂岩体以西隐伏深大断裂的推断依据及其意义[J]. 物探与化探, 2021, 45(3): 645-652.
[7] 屈利军, 王庆, 李波, 姚伟. 综合物探方法在湖南香花岭矿田三合圩矿区深部成矿规律研究中的应用[J]. 物探与化探, 2020, 44(6): 1313-1321.
[8] 何继善. 广域电磁法理论及应用研究的新进展[J]. 物探与化探, 2020, 44(5): 985-990.
[9] 赵敏, 盛勇, 戚良刚. 高精度重磁测量在覆盖区找矿中的应用——以无为县蔚山铁铜矿预查为例[J]. 物探与化探, 2019, 43(6): 1211-1216.
[10] 岳航羽, 张保卫, 王凯, 李金丽, 王广科, 陈德元. 一种适用于沿海滩涂区的浅层高精度地震探测技术[J]. 物探与化探, 2019, 43(6): 1225-1235.
[11] 毕炳坤, 常云真, 施强, 申随水. 综合物探在崤山东部浅覆盖区勘查银多金属矿床中的应用[J]. 物探与化探, 2019, 43(5): 976-985.
[12] 何祎, 雷晓东, 关伟, 李晨, 李巧灵. 北京副中心地区燕郊断裂空间展布特征[J]. 物探与化探, 2019, 43(3): 461-467.
[13] 甄慧翔, 杨宇山, 李媛媛, 刘天佑. 基于L-BFGS反演算法的ΔT精确计算磁异常分量Tap方法[J]. 物探与化探, 2019, 43(3): 598-607.
[14] 张虹, 屈进红, 姜作喜, 王萌, 李行素. 高精度航空重力测量系统分项指标设计分析[J]. 物探与化探, 2019, 43(2): 408-414.
[15] 杨玉勤, 李兵海, 张翔. 利用航磁增强处理方法提取喇嘛苏铜矿及其外围弱磁异常[J]. 物探与化探, 2018, 42(6): 1173-1179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com