Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (4): 919-924    DOI: 10.11720/wtyht.2025.0032
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
水道浊积体特征识别模式及其储层地震预测——以西非下刚果盆地MC块为例
高君1, 徐睿2, 黄家宸1, 苑书金1
1.中国石油化工股份有限公司 石油勘探开发研究院, 北京 102206
2.中国石油天然气集团有限公司 中国石油管道局工程有限公司, 河北 廊坊 065000
Feature identification model and seismic reservoir prediction of channel turbidite bodies: A case study of the MC block,Lower Congo Basin,West Africa
GAO Jun1, XU Rui2, HUANG Jia-Chen1, YUAN Shu-Jin1
1. Research Institute of Petroleum Exploration & Production, PetroChina, Beijing 102206, China
2. China Petroleum Pipeline Engineering Co., Ltd.,PetroChina, Langfang 065000, China
全文: PDF(4981 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

西非下刚果盆地深水区发育典型水道浊流体系,是深水油气勘探的重点区域。该区浊积体具有非均质性强、储层展布复杂的特点。传统方法在浊积体识别精度和储层预测能力上存在不足,难以满足高效勘探需求。本研究基于深水重力流理论,以西非下刚果盆地深水区水道浊流体系为对象,依据浊积作用发育部位、可容空间形态及浊积体内幕特征,结合钻井揭示的岩石相、测井相以及地震相等综合建立了4类不同尺度水道浊积体的特征识别模式;进一步以相带控储为基础,基于改进的射线弹性阻抗反演方法构建了新的复合弹性参数,使其对浊积砂岩储层具有更佳的分辨能力,从而实现了浊积砂岩储层的定量预测。经后验井检验精度较高,应用效果好,为该类深水区油气资源评价、井位部署提供了重要依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高君
徐睿
黄家宸
苑书金
关键词 水道浊积体特征识别模式浊积砂岩射线弹性反演复合弹性参数储层预测    
Abstract

A typical channel turbidite system is developed in the deep-water area of the Lower Congo Basin,West Africa,establishing this area as a significant target for deep-water oil and gas exploration.Turbidite bodies in this area are characterized by strong heterogeneity and a complex reservoir distribution.Traditional methods show limited turbidite body identification accuracy and reservoir prediction ability,failing to support efficient exploration.This study investigated the channel turbidite system in this area based on the deep-water gravity flow theory.It established feature identification models for four kinds of channel turbidites at different scales.The models integrate the turbidite depositional site,accommodation space geometry,internal turbidite characteristics,and the rock,log,and seismic facies obtained through drilling.Furthermore,guided by the principle of facies-controlled reservoir distribution,new composite elastic parameters were constructed based on an improved ray-path elastic impedance inversion method.These parameters provided enhanced resolution for turbidite sandstone reservoirs,enabling a quantitative prediction of such reservoirs.Validation with post-test wells demonstrates high accuracy and favorable application outcomes.Overall,this study serves as a foundational guide for oil and gas resource assessments and well placement in similar deep-water areas.

Key wordschannel turbidite body    feature identification model    turbidite sandstone    ray-path elastic impedance inversion    composite elastic parameter    reservoir prediction
收稿日期: 2025-02-24      修回日期: 2025-06-10      出版日期: 2025-08-20
ZTFLH:  P631.4  
基金资助:“十三五”国家重大专项“南大西洋两岸重点盆地油气勘探开发关键技术”(2016ZX05033-02)
作者简介: 高君(1966-),男,博士,教授级高级工程师,长期从事地震地质综合研究工作。
引用本文:   
高君, 徐睿, 黄家宸, 苑书金. 水道浊积体特征识别模式及其储层地震预测——以西非下刚果盆地MC块为例[J]. 物探与化探, 2025, 49(4): 919-924.
GAO Jun, XU Rui, HUANG Jia-Chen, YUAN Shu-Jin. Feature identification model and seismic reservoir prediction of channel turbidite bodies: A case study of the MC block,Lower Congo Basin,West Africa. Geophysical and Geochemical Exploration, 2025, 49(4): 919-924.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.0032      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I4/919
Fig.1  浊积岩体特征识别技术流程
Fig.2  安哥拉海域水道浊积体特征模式
Fig.3  地震分频体RGB融合属性图及C-n1井岩性剖面
a—近东西向反射地震剖面;b—地震分频RGB融合属性;c—过井地层岩性剖面
Fig.4  射线弹性阻抗反演剖面
Fig.5  射线弹性阻抗交会构建新的AVO弹性阻抗
Fig.6  基于射线弹性反演的fAVO-IMP浊积砂储层厚度预测(a)和孔隙度预测(b)
[1] 李相博, 刘化清, 杨田, 等. 深水重力流沉积与油气成藏[M]. 北京: 石油工业出版社, 2022.
[1] Li X B, Liu H Q, Yang T, et al. Deep-water gravity flow deposition and hydrocarbon accumulation[M]. Beijing: Petroleum Industry Press, 2022.
[2] 朱伟林, 崔旱云, 吴培康, 等. 被动大陆边缘盆地油气勘探新进展与展望[J]. 石油学报, 2017, 38(10):1099-1109.
doi: 10.7623/syxb201710001
[2] Zhu W L, Cui H Y, Wu P K, et al. New development and outlook for oil and gas exploration in passive continental margin basins[J]. Acta Petrolei Sinica, 2017, 38(10):1099-1109.
doi: 10.7623/syxb201710001
[3] Reading H G, Richards M. Turbidite systems in deep-water basin margins classified by grain size and feeder system[J]. AAPG Bulletin, 1994, 78(5):792-822.
[4] Kuenen P H, Migliorini. Turbidity currents as a cause of Graded bedding[J]. The Journal of Geology, 1950, 58(4):329-344.
[5] Mennard H W. Deep-sea channels topography and sedimentation[J]. American Association of Petroleum Geologist Bulletin, 1955,39:236-255.
[6] Bouma A H. Sedimentology of some flysch deposits[M]. Amsterdam,Netherland, Elsevier Pub,1962.
[7] Normark W R. Growth patterns of deep sea fans[J]. American Association of Petroleum Geologists Bulletin, 1970,54:2170-2195.
[8] Walker R G. Deep water sandstone facies and ancient submarine fans:Models for exploration of stratigraphic traps[J]. American Association of Petroleum Geologists Bul letin,1978.62:932-966.
[9] 庞雄, 陈长民, 朱明, 等. 深水沉积研究前缘问题[J]. 地质论评, 2007, 53(1):36-43.
[9] Pang X, Chen C M, Zhu M, et al. Frontier of the deep-water deposition study[J]. Geological Review, 2007, 53(1):36-43.
[10] 蔡露露, 刘春成, 吕明, 等. 西非下刚果盆地深水水道发育特征及沉积储层预测[J]. 中国海上油气, 2016, 28(2):60-70.
[10] Cai L L, Liu C C, Lyu M, et al. The development characteristics of deep water channel and sedimentary reservoir prediction in Lower Congo basin,West Africa[J]. China Offshore Oil and Gas, 2016, 28(2):60-70.
[11] 韩文明, 于水, 刘阳, 等. 复杂深水重力构造勘探研究新方法——以尼日尔三角洲深水区A构造为例[J]. 中国海上油气, 2012, 24(1):13-16.
[11] Han W M, Yu S, Liu Y, et al. A new method to research complex gravity structures in deep water:A case of structure A in deep-water Niger Delta[J]. China Offshore Oil and Gas, 2012, 24(1):13-16.
[12] 张金淼, 韩文明, 范洪耀, 等. 西非深水区地震勘探关键技术研究及应用实践[J]. 中国海上油气, 2013, 25(6):43-47.
[12] Zhang J M, Han W M, Fan H Y, et al. Some key techniques of seismic prospecting and their application in West Africa deep water region[J]. China Offshore Oil and Gas, 2013, 25(6):43-47.
[13] 廉桂辉, 朱亚婷, 王晓光, 等. 叠前反演技术在玛湖油田储层预测中的应用[J]. 特种油气藏, 2022, 29(1):80-84.
doi: 10.3969/j.issn.1006-6535.2022.01.012
[13] Lian G H, Zhu Y T, Wang X G, et al. Application of pre-stack inversion technology to reservoir prediction of Mahu Oilfield[J]. Special Oil & Gas Reservoirs, 2022, 29(1):80-84.
[14] 赵泽茜, 成丽芳, 范殿佐. 时变分频反褶积在提高薄砂体预测精度方面的应用[J]. 物探与化探, 2023, 47(6):1588-1594.
[14] Zhao Z X, Cheng L F, Fan D Z. Application of time-varying frequency-division deconvolution in improving the prediction accuracy of thin sandbodies[J]. Geophysical and Geochemical Exploration, 2023, 47(6):1588-1594.
[15] Whitcombe D N. Elastic impedance normalization[J]. Geophysics, 2002, 67(1):60-62.
[16] Ma J F, Morozov I B. Ray-path elastic impedance[R]. Calgary: Canadian Society of Exploration Geophysicists National Convention, 2004.
[17] 马劲风. 弹性阻抗EI意义的延伸与广义弹性阻抗[R]. 北京: CPS/SEG2004国际地球物理会议, 2004.
[17] Ma J F. Extension of elastic impedance and generalized elastic impedance[R]. Beijing: CPS/SEG2004 Proceedings of International Geophysical Conference, 2004.
[18] 刘力辉, 王绪本. 一种改进的射线弹性阻抗公式及弹性参数反演[J]. 石油物探, 2011, 50(4):331-335,23.
doi: 10.3969/j.issn.1000-1441.2011.04.003
[18] Liu L H, Wang X B. One modified ray-path elastic impedance and elastic parameter inversion[J]. Geophysical Prospecting for Petroleum, 2011, 50(4):331-335,23.
doi: 10.3969/j.issn.1000-1441.2011.04.003
[1] 杨光, 王立贤, 胡佳, 刘智军, 张红杰, 王云鹤, 孙龙, 张旭升, 陈彦虎. 地震波形指示反演方法在叠置薄砂岩预测中的应用——以松辽盆地南部乾安油田高台子油层为例[J]. 物探与化探, 2025, 49(4): 846-854.
[2] 汪舒, 王锐, 杨家义, 赵卫升, 廖建. 基于非平稳褶积模型的泊松阻抗及裂缝参数叠前地震各向异性高分辨率直接反演方法[J]. 物探与化探, 2025, 49(3): 642-652.
[3] 张振波, 刘灵, 刘道理, 杨登锋. 番禺4洼古近系储层叠前反演预测技术研究[J]. 物探与化探, 2025, 49(2): 312-320.
[4] 米信武, 周成刚, 田军, 韩耀祖, 李亚楠, 肖冰清. 塔里木盆地轮南地区三叠系非均质薄砂岩储层预测[J]. 物探与化探, 2025, 49(2): 321-329.
[5] 张永升, 张荣, 樊易, 张安家, 李英才. 基于稀疏约束频率域抛物线Radon变换的波场分解[J]. 物探与化探, 2024, 48(6): 1653-1663.
[6] 曹绍贺, 任凤茹, 王霄霄. 东胜气田致密砂岩储层甜点预测关键技术与应用效果[J]. 物探与化探, 2024, 48(4): 954-961.
[7] 何希鹏, 刘明, 薛野, 李彦婧, 何贵松, 孟庆利, 张勇, 刘昊娟, 蓝加达, 杨帆. 渝东南复杂构造区常压页岩气地球物理勘探实践及攻关方向[J]. 物探与化探, 2024, 48(2): 314-326.
[8] 李路路, 姜国宇, 刘涛, 何岩, 张永波. 准噶尔盆地石南地区白垩系储层地球物理方法识别[J]. 物探与化探, 2024, 48(2): 334-341.
[9] 史全党, 孔令业, 吴超, 丁艳雪, 刘泽民, 于雪, 王江. 基于小波边缘分析与井—震联合建模的波阻抗反演技术在陆梁隆起带储层预测中的应用[J]. 物探与化探, 2023, 47(6): 1425-1432.
[10] 陈人杰, 徐乐意, 刘灵, 朱焕, 易浩, 姜曼. 基于协克里金技术的陆相地层反演低频模型构建方法[J]. 物探与化探, 2023, 47(6): 1595-1601.
[11] 宋晨, 金吉能, 潘仁芳, 朱博远, 喻志骅, 唐小玲. 分频AVO技术在安岳气田须二段储层含气性分析中的应用[J]. 物探与化探, 2023, 47(3): 681-689.
[12] 冯鑫. 平点技术在西非深水碎屑岩储层烃检中的应用[J]. 物探与化探, 2022, 46(2): 433-443.
[13] 王成泉, 王孟华, 周佳宜, 王盛亮, 杨洲鹏, 刘慧, 张红文. 多属性融合定量储层预测方法研究与应用——以廊固凹陷杨税务潜山为例[J]. 物探与化探, 2022, 46(1): 87-95.
[14] 刘鸿洲, 王孟华, 张浩, 彭玲丽, 李雯, 张杰, 赵智鹏, 伍泽荆. 基于分频构形反演方法的河道砂精准预测——以华北冀中探区赵皇庄地区为例[J]. 物探与化探, 2021, 45(5): 1311-1319.
[15] 刘家材, 张冲, 韩绪军. 哈萨克斯坦B油田M02段综合地震储层预测[J]. 物探与化探, 2021, 45(2): 379-386.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com