Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (3): 681-689    DOI: 10.11720/wtyht.2023.1273
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
分频AVO技术在安岳气田须二段储层含气性分析中的应用
宋晨1(), 金吉能1(), 潘仁芳1, 朱博远1, 喻志骅2, 唐小玲3
1.长江大学 地球科学学院,湖北 武汉 430100
2.中国石油勘探开发研究院,北京 100007
3.华北油田勘探开发研究院,河北 任丘 062552
Application of frequency division AVO in the gas-bearing analysis of reservoir in the Xu-2 Member of the Anyue gas field
SONG Chen1(), JIN Ji-Neng1(), PAN Ren-Fang1, ZHU Bo-Yuan1, YU Zhi-Hua2, TANG Xiao-Ling3
1. School of Earth Sciences,Yangtze University,Wuhan 430100,China
2. Research Institute of Petroleum Exploration and Development,Beijing 100007,China
3. Exploration and Development Research Institute of Huabei Oilfield,Renqiu 062552,China
全文: PDF(6171 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

四川盆地安岳气田须二段致密气储量丰富,地质特征相对复杂,常规 AVO分析方法预测储层含气性分布的精度较低,需要研究采用更加精细的地震预测方法。基于单井岩石物理和正演模型特征分析,采用基于小波变换下的分频AVO反演,优选出优势频段的AVO属性进行融合构建含气性因子,进而对安岳气田须二段有利含气富集区带进行分布预测。结果表明,须二段气层主要表现为Ⅳ类AVO响应异常。优势频段35~45 Hz的气、水层AVO响应比全频段的AVO响应的差异特征较明显,差异性更大,更易突出含气响应特征;AVO含气性敏感属性为相对横波速度差异、相对泊松比差和流体因子,经融合得到含气指示因子的负异常区域指示含气有利区;井震对比可知优势频段AVO属性的含气性预测效果较好。该方法以期为非常规油气勘探提供技术支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋晨
金吉能
潘仁芳
朱博远
喻志骅
唐小玲
关键词 分频AVO小波变换优势频率致密气砂岩储层预测    
Abstract

The second member of the Xujiahe Formation (the Xu-2 Member) in the Anyue area of the Sichuan Basin enjoys abundant tight gas reserves.However,this member has complex geological characteristics,and conventional amplitude versus offset (AVO) analysis has relatively low precision in predicting the gas-bearing property of the reservoir in this member.Therefore,it is necessary to develop a more fine-scale seismic prediction method. Based on the analysis of single-well petrophysical characteristics and forward models,the AVO attributes of the dominant frequency range were selected through the frequency division AVO inversion based on wavelet transform.Then,these AVO attributes were fused to form the gas-bearing indicator,using which the distribution of favorable gas-enrichment zones in the Xu-2 Member of the Anyue area was predicted.The results are as follows:The gas zones in the Xu-2 Member primarily present class IV AVO anomalies;For the gas and water zones,their AVO responses in the dominant frequency range (35~45 Hz) differed significantly from those in the full frequency band,and their gas-bearing response characteristics were more pronounced in the dominant frequency range;The AVO attributes sensitive to the gas-bearing property included the difference in the S-wave velocity,the difference in Poisson's ratio, and the fluid factor.The gas-bearing indicator was obtained through the fusion of these AVO attributes,and the negative anomalies of the gas-bearing indicator were indicative of favorable gas-bearing zones;The seismic-log correlation shows that the AVO attributes in the dominant frequency range yielded positive gas-bearing prediction effects.The method proposed in this study is expected to provide technical support for unconventional oil and gas exploration.

Key wordsfrequency division AVO    wavelet transform    dominant frequency    tight gas sandstone    reservoir prediction
收稿日期: 2022-06-04      修回日期: 2023-03-21      出版日期: 2023-06-20
ZTFLH:  P631.4  
基金资助:国家科技重大专项课题“致密气有效储层预测技术”(2016ZX05047-002)
通讯作者: 金吉能(1986-),男,副教授,主要从事储层地球物理表征和非常规油气资源评价方面的研究工作。Email:Jinjineng@yangtzeu.edu.cn
作者简介: 宋晨(1997-),女,现正攻读矿物学、岩石学、矿床学专业硕士学位,主要从事地球物理研究工作。Email:390172641@qq.com
引用本文:   
宋晨, 金吉能, 潘仁芳, 朱博远, 喻志骅, 唐小玲. 分频AVO技术在安岳气田须二段储层含气性分析中的应用[J]. 物探与化探, 2023, 47(3): 681-689.
SONG Chen, JIN Ji-Neng, PAN Ren-Fang, ZHU Bo-Yuan, YU Zhi-Hua, TANG Xiao-Ling. Application of frequency division AVO in the gas-bearing analysis of reservoir in the Xu-2 Member of the Anyue gas field. Geophysical and Geochemical Exploration, 2023, 47(3): 681-689.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1273      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I3/681
Fig.1  不同流体类型储层井旁道频谱差异
Fig.2  典型气、水层地震频谱特征
Fig.3  A井及B井正演模拟
a—A井测井曲线与正演道集;b—B井测井曲线与正演道集;c—A井AVO曲线;d—B井AVO曲线
Fig.4  研究区多井气、水层P-G交会
Fig.5  A井及B井分频AVO曲线
a—A井气层;b—B井水层
Fig.6  A井气层及B井水层分频P-G交会
Fig.7  A井气层(a)及B井水层(b)的叠前地震道集
Fig.8  A井气层(a)及B井水层(b)的原始叠前道集振幅响应特征
Fig.9  A井气层(a)及B井水层(b)的35~45 Hz角道集
Fig.10  35~45 Hz分频数据体在A井气层(a)及B井水层(b)的井旁的振幅响应曲线
AVO属性 物理意义 计算公式
差异横波速度 反映出横波速度的
变化率特征
D V S = 1 + 0.25 k × C - 0.25 k × B - A
差异密度 反映密度的变化
率特征
D D N = 2 A - C
差异纵波速度 反映出纵波速度的
变化率特征
D V P = 2 C
流体因子 显示与Castagna方
程不符的含油气区
F F = R p - 0.58 R s
泊松比 反映岩层泊松比
的变化特征
P R = a × A + b × B
横波反射系数 反映横波阻抗
的特征
R V S = a × A - b × B
Table 1  AVO属性物理意义及公式
Fig.11  多井AVO属性与含气性响应吻合度对比
Fig.12  Yue111—Yue118—Yue145井连线的35~45 Hz优势频段属性预测剖面
Fig.13  须二段上亚段DHI含气性预测平面对比
井名 气测
结果
AVO
响应
全频井震对比 分频井震对比
含气
响应
吻合
情况
含气
响应
吻合
情况
Yue103 气井 负异常 吻合 吻合
Yue111 气井 负异常 较吻合 吻合
Yue113 气井 负异常 吻合 吻合
Yue114 气井 正异常 不吻合 不吻合
Yue118 气井 负异常 不吻合 较吻合
Yue122 水井 负异常 吻合 吻合
Yue145 气井 负异常 不吻合 吻合
Yue101-3 水井 正异常 吻合 吻合
Yue112 水井 正异常 吻合 吻合
Yue125 水井 正异常 吻合 吻合
Table 2  AVO含气性异常响应对比
[1] 谢继容, 张健, 李国辉, 等. 四川盆地须家河组气藏成藏特点及勘探前景[J]. 西南石油大学学报:自然科学版, 2008, 30(6):40-44.
[1] Xie J R, Zhang J, Li G H, et al. Exploration prospect and gas reservoir characteristics of Xujiahe Formation in Sichuan Basin[J]. Journal of Southwest Petroleum University:Science &Technology Edition, 2008, 30(6):40-44.
[2] 郝国丽, 柳广弟, 谢增业, 等. 川中地区须家河组致密砂岩气藏气水分布模式及影响因素分析[J]. 天然气地球科学, 2010, 21(3):427-434.
[2] Hao G L, Liu G D, Xie Z Y, et al. Gas water distributed pattern in Xujiahe Formation tight gas sandstone reservoir and influential factor in central Sichuan Basin[J]. Natural Gas Geoscience, 2010, 21(3):427-434.
[3] 唐跃, 王靓靓, 崔泽宏. 川中地区上三叠统须家河组气源分析[J]. 地质通报, 2011, 30(10):1608-1613.
[3] Tang Y, Wang L L, Cui Z H. An analysis of the gas source in the Upper Triassic Xujiahe Formation,central Sichuan Basin[J]. Geological Bulletin of China, 2011, 30(10):1608-1613.
[4] 郭彤楼. 四川盆地北部陆相大气田形成与高产主控因素[J]. 石油勘探与开发, 2013, 40(2):139-149.
[4] Guo T L. Key controls on accumulation and high production of large non-marine gas fields in northern Sichuan Basin[J]. Petroleum Exploration and Development, 2013, 40(2):139-149.
doi: 10.1016/S1876-3804(13)60017-8
[5] Yu Y, Lin L B, Zhai C B, et al. Impacts of lithologic characteristics and diagenesis on reservoir quality of the 4th member of the Upper Triassic Xujiahe Formation tight gas sandstones in the western Sichuan Basin,southwest China[J]. Marine and Petroleum Geology, 2019, 107:1-19.
doi: 10.1016/j.marpetgeo.2019.04.040
[6] Zhao C J, Jiang Y L, Wang L J. Data-driven diagenetic facies classification and well-logging identification based on machine learning methods:A case study on Xujiahe tight sandstone in Sichuan Basin[J]. Journal of Petroleum Science and Engineering, 2022,217.
[7] 郑荣才, 戴朝成, 朱如凯, 等. 四川类前陆盆地须家河组序—岩相古地理特征[J]. 地质论评, 2009, 55(4):484-495.
[7] Zheng R C, Dai C C, Zhu R K, et al. Sequence based lithofacies and paleogeographic characteristics of Upper Triassic Xujahe Formation in Sichuan Basin[J]. Geological Review, 2009, 55(4):484-495.
[8] 关旭, 金吉能, 杨威, 等. 川中地区须家河组岩性气藏特征与含气有利区预测——以安岳—磨溪地区须家河组二段为例[J]. 天然气地球科学, 2022, 33(3):358-368.
[8] Guan X, Jin J N, Yang W, et al. Lithologic gas reservoir characteristics and prediction of gas-bearing favorable zone ofthe Xujiahe Formation in central Sichuan Basin:Case study of the 2nd member of Xujiahe Formation in Anyue-Moxi areas[J]. Natural Gas Geoscience, 2022, 33(3):358-368.
[9] Lu H Y, Cheng B J, Shen Z M, et al. Gas and water reservoir differentiation by time-frequency analysis:a case study in southwest China[J]. Acta Geodaetica et Geophysica, 2013, 48(4):439-450.
doi: 10.1007/s40328-013-0031-7
[10] 陈小宏, 田立新, 黄饶. 地震分频AVO方法研究现状与展望[J]. 海相油气地质, 2009, 14(4):60-66.
[10] Chen X H, Tian L X, Huang R. Research progressing on frequency dependent AVO analysis[J]. Marine Origin Petroleum Geology, 2009, 14(4):60-66.
[11] 张德明, 刘志刚, 臧殿光, 等. 基于叠前同时反演的致密砂岩储层预测及含气性识别——以苏里格S区块为例[J]. 物探与化探, 2022, 46(3):645-652.
[11] Zhang D M, Lin Z G, Zang D G, et al. Prediction and identification of gas-bearing gas-bearing properties of tight sandstone reservoirs through simultaneous pre-stack inversion:A case study of block S in Sulige gas field[J]. Geophysical and Geochemical Exploration, 2022, 46(3):645-652.
[12] 高静怀, 陈文超, 李幼铭, 等. 广义S变换与薄互层地震响应分析[J]. 地球物理学报, 2003, 46(4):526-532.
[12] Gao J H, Chen W C, Li Y M, et al. Generalized S transform and seismic response analysis of thin interbeds[J]. Chinese Journal of Geophysics, 2003, 46(4):526-532.
doi: 10.1002/cjg2.v46.3
[13] 路慎强. 叠前分频AVO分析方法在罗家地区的应用研究[J]. 石油物探, 2013, 52(2):151-156.
doi: 10.3969/j.issn.1000-1441.2013.02.006
[13] Lu S Q. Application of prestack frequency-division AVO analysis method in Luojia area[J]. Geophysical Prospecting for Petroleum, 2013, 52(2):151-156.
doi: 10.3969/j.issn.1000-1441.2013.02.006
[14] 宁媛丽, 韩立国, 周子阳, 等. 应用反演谱分解去除调谐效应的分频AVO技术[J]. 物探化探计算技术, 2012, 34(3):243-248.
[14] Ning Y L, Han L G, Zhou Z Y, et al. Frequency-dependent AVO based on removing tuning effect via inverse spectral decomposition[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2012, 34(3):243-248.
[15] 孔栓栓, 韩自军, 张德龙, 等. 分频振幅检测“亮点”型浅层气的方法研究及应用[J]. 物探与化探, 2019, 43(3):626-633.
[15] Kong S S, Han Z J, Zhang D L, et al. The study and application of the method using frequency division amplitude to recognizing " bright spot" shallow gas layers[J]. Geophysical and Geochemical Exploration, 2019, 43(3):626-633.
[16] 左国平, 范国章, 蔡铮, 等. 地震分频 AVO 技术在孟加拉湾海域深水沉积储层烃类检测中的应用[J]. 天然气地球科学, 2020, 31(4):567-577.
[16] Zuo G P, Fan G Z, Cai Z, et al. The application of seismic frequency decomposition AVO method in offshore deep-water sedimentary reservoirs hydrocarbon detection in the Bay of Bengal[J]. Natural Gas Geoscience, 2020, 31(4):567-577.
[17] 金吉能, 潘仁芳, 周洋, 等. 建南地区须四段致密砂岩含气储层预测研究[J]. 科学技术与工程, 2015, 15(8):150-156.
[17] Jin J N, Pan R F, Zhou Y, et al. Predicting tight gas-bearing Sandstone reservoir of the 4th Xijiahe Formation in Jiannan area[J]. Science Technology and Engineering, 2015, 15(8):150-156.
[18] 李新豫, 张静, 包世海, 等. 川中地区须二段气藏地震预测陷阱分析及对策——以龙女寺区块为例[J]. 岩性油气藏, 2020, 32(1):120-127.
[18] Li X Y, Zhang J, Bao S H, et al. Analysis and countermeasures of seismic prediction traps for Xu-2 gas reservoir in central Sichuan Basin:a case study from Longnyusi block[J]. Lithologic Reservoirs, 2020, 32(1):120-127.
[19] 王卫红, 姜在兴, 潘仁芳. AVO交会分析及其应用[J]. 西安石油学院学报:自然科学版, 2003, 18(2):5-8.
[19] Wang W H, Jiang Z X, Pan R F. AVO cross plot analysis and its application[J]. Journal of Xi'an Petroleum Institute:Natural Science Edition, 2003, 18(2):5-8.
[20] Li L, Cai H Y, Jiang Q T, et al. An empirical signal separation algorithm for multicomponent signals based on linear time-frequency analysis[J]. Mechanical Systems and Signal Processing, 2019, 121:791-809.
doi: 10.1016/j.ymssp.2018.11.037
[21] 路鹏飞, 杨长春, 郭爱华. 频谱成像技术研究进展[J]. 地球物理学进展, 2007, 22(5):1517-1521.
[21] Lu P f, Yang C C, Guo A H. The present research on frequency spectrum imaging technique[J]. Progress in Geophysics, 2007, 22(5):1517-1521.
[22] Maciusowicz M, Psuj G. Analysis of the possibility of using various time-frequency transformation methods to Barkhausen noise characterization for the need of magnetic anisotropy evaluation in steels[J]. Applied Sciences, 2021, 11(13):6193.
doi: 10.3390/app11136193
[23] 陈胜, 欧阳永林, 曾庆才, 等. 匹配追踪子波分解重构技术在气层检测中的应用[J]. 岩性油气藏, 2014, 26(6):111-114.
[23] Chen S, Ouyang Y L, Zeng Q C, et al. Application of matching pursuit wavelet decomposition and reconstruction technique to reservoir prediction and gas detection[J]. Lithologic Reservoirs, 2014, 26(6):111-114.
[24] Morlet G, Fourgeau E, Giard D. Wave propagation and sampling theory partI:complex signal and scat-tering in multilayered media[J]. Geophysics, 1982, 47(2):203-221.
doi: 10.1190/1.1441328
[25] Pandey V, Sain K. AVA analysis of BSR in fractured filled gas-hydrates reservoir in Krishna-Godavari Basin,India[J]. Journal of the Geological Society of India, 2022, 98:1253-1260.
doi: 10.1007/s12594-022-2160-5
[26] 孟宪军, 姜秀娣, 黄捍东, 等. 叠前AVA广义非线性纵、横波速度反演[J]. 石油地球物理勘探, 2004, 39(6):645-650.
[26] Meng X J, Jiang X D, Huang H D, et al. Generalized non-linear P wave and S wave velocity inversion of prestack AVA[J]. Oil Geophysical Prospecting, 2004, 39(6):645-650.
[27] 包培楠, 王维红, 李文龙, 等. CRP道集优化处理及其在大庆油田S区的应用[J]. 物探与化探, 2019, 43(5):1030-1037.
[27] Bao P N, Wang W H, Li W L, et al. CRP gather optimal processing and its application to S area of Daqing oilfield[J]. Geophysical and Geochemical Exploration, 2019, 43(5):1030-1037.
[28] 郭贵安, 关旭, 肖富森, 等. 四川盆地中部侏罗系沙溪庙组致密砂岩气藏地震一体化描述技术[J]. 天然气工业, 2022, 42(1):40-50.
[28] Guo G A, Guan X, Xiao F S, et al. Integrated seismic description technology for tight sandstone gas reservoir of Jurassic Shaximiao Formation in the central Sichuan Basin[J]. Natural Gas Industry, 2022, 42(1):40-50.
[29] 潘仁芳. AVO的内涵与外延[J]. 石油天然气学报, 2006, 28(2):50-55.
[29] Pan R F. Intension and extension of AVO[J]. Journal of Oil and Gas Technology, 2006, 28(2):50-55.
[30] Aki K, Riehards P G. Quantitative seismology:Theory and methods[M]. New York: Earthquake Press,1980.
[31] Shuey R T. A simplification of the Zoeppritz equations[J]. Geophysics, 1985, 50(4):609-614.
doi: 10.1190/1.1441936
[32] 任丽丹, 王鹏, 刘成芳, 等. 叠前AVO反演技术在顺南地区碳酸盐岩储层含油气性预测中的应用[J]. 工程地球物理学报, 2018, 15(3):292-298.
[32] Ren L D, Wang P, Liu C F, et al. The application of pre-stack AVO inversion technology to the oil-bearing prediction of carbonate reservoirs in shunnan area[J]. Chinese Journal of Engineering Geophysics, 2018, 15(3):292-298.
[33] 苏建龙, 屈大鹏, 陈超, 等. 叠前地震反演方法对比分析——焦石坝页岩气藏勘探实例[J]. 石油地球物理勘探, 2016, 51(3):581-588.
[33] Su J L, Qu D P, Chen C, et al. Comparison and analysis of pre stack seismic inversion methods:An example of Jiaoshiba shale gas reservoir exploration[J]. Oil Geophysical Prospecting, 2016, 51(3):581-588.
[1] 冯鑫. 平点技术在西非深水碎屑岩储层烃检中的应用[J]. 物探与化探, 2022, 46(2): 433-443.
[2] 王成泉, 王孟华, 周佳宜, 王盛亮, 杨洲鹏, 刘慧, 张红文. 多属性融合定量储层预测方法研究与应用——以廊固凹陷杨税务潜山为例[J]. 物探与化探, 2022, 46(1): 87-95.
[3] 刘鸿洲, 王孟华, 张浩, 彭玲丽, 李雯, 张杰, 赵智鹏, 伍泽荆. 基于分频构形反演方法的河道砂精准预测——以华北冀中探区赵皇庄地区为例[J]. 物探与化探, 2021, 45(5): 1311-1319.
[4] 夏红敏, 郑小文, 黄捍东, 肖炎辉, 董金超, 廖俊. 基于去低频化的低幅度构造识别方法研究及应用[J]. 物探与化探, 2021, 45(4): 998-1003.
[5] 刘家材, 张冲, 韩绪军. 哈萨克斯坦B油田M02段综合地震储层预测[J]. 物探与化探, 2021, 45(2): 379-386.
[6] 刘浩杰, 陈雨茂, 王延光, 宗兆云, 吴国忱, 侯庆杰. 粘弹介质叠前四参数同步反演及应用[J]. 物探与化探, 2021, 45(1): 140-148.
[7] 孔省吾, 张云银, 沈正春, 张建芝, 魏红梅, 宋艳阁, 王甜. 波形指示反演在灰质发育区薄互层浊积岩预测中的应用——以牛庄洼陷沙三中亚段为例[J]. 物探与化探, 2020, 44(3): 665-671.
[8] 杨雪, 裴家学, 何绍勇, 蒋学峰, 谢天寿, 高建军. 煤层发育条件下薄储层预测方法研究[J]. 物探与化探, 2020, 44(2): 406-411.
[9] 晋达, 杜浩坤, 孟凡冰, 秦广胜, 苏云, 李娜. 普光地区长兴组生物礁储层分布预测[J]. 物探与化探, 2020, 44(1): 50-58.
[10] 沙志彬, 万晓明, 赵忠泉, 梁金强, 杨瑞召, 白钰, 柴祎. 叠前同时反演技术在珠江口盆地西部海域天然气水合物储层预测中的应用[J]. 物探与化探, 2019, 43(3): 476-485.
[11] 王志农, 孙成禹, 伍敦仕. 基于最佳小波基的地震面波插值方法[J]. 物探与化探, 2019, 43(1): 189-198.
[12] 国春香, 郭淑文, 朱伟峰, 袁雪花, 彭雪梅, 邢兴, 陈明旭. 河流相砂泥岩薄互层预测方法研究与应用[J]. 物探与化探, 2018, 42(3): 594-599.
[13] 吕振宇, 边立恩, 于娅, 王军. 地震正演技术在主控物源研究中的应用[J]. 物探与化探, 2018, 42(2): 276-284.
[14] 凌云, 杜向东, 曹思远. FAVO反演技术及其在深水砂岩储层中的应用[J]. 物探与化探, 2018, 42(1): 161-165.
[15] 谭沛森. 多源重力数据融合方法及其在南海的应用[J]. 物探与化探, 2018, 42(1): 104-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com