High-resolution direct inversion of Poisson's impedance and fracture parameters using prestack seismic anisotropy data based on the non-stationary convolution model
WANG Shu1(), WANG Rui1, YANG Jia-Yi1, ZHAO Wei-Sheng1, LIAO Jian2()
1. Boda Oil and Gas Management Area Oil and Gas Reservoir Geology Institute, Tarim Oilfield Company, PetroChina, Korla 841000, China 2. Chengdu Southwest Petroleum Engineering Technology Co., Ltd., Chengdu 610500, China
Since no targeted seismic inversion techniques are available for the prediction of complex sandstone-mudstone reservoirs, conventional inversion methods struggle to provide accurate sand body predictions in the presence of sandstone-mudstone interbeds or horizontal fractures. Hence, this study selected Poisson's impedance as the sensitive parameter for reservoir prediction based on the petrophysical parameter cross plots using log data from the study area. Considering the characteristics of fracture development in the reservoirs, this study derived the equation of anisotropic reflection coefficients in vertical transverse isotropy (VTI) media, incorporating Poisson's impedance. Furthermore, this study designed a forward modeling operator using a non-stationary convolution model to improve the strong attenuation characteristics of seismic waves generated by sandstone-mudstone interbeds and protect the reflection characteristics of deep thin reservoirs. Finally, this study proposed a high-resolution direct inversion of Poisson's impedance and fracture parameters using prestack seismic anisotropy data, providing a novel approach for high-resolution characterization of the distribution of sandstone-mudstone reservoirs and the assessment of fracture-bearing properties. Both model and field data tests validate the feasibility and adaptability of the proposed method.
汪舒, 王锐, 杨家义, 赵卫升, 廖建. 基于非平稳褶积模型的泊松阻抗及裂缝参数叠前地震各向异性高分辨率直接反演方法[J]. 物探与化探, 2025, 49(3): 642-652.
WANG Shu, WANG Rui, YANG Jia-Yi, ZHAO Wei-Sheng, LIAO Jian. High-resolution direct inversion of Poisson's impedance and fracture parameters using prestack seismic anisotropy data based on the non-stationary convolution model. Geophysical and Geochemical Exploration, 2025, 49(3): 642-652.
Lu J, Yang Z, Wang Y, et al. Joint PP and PS AVA seismic inversion using exact Zoeppritz equations[J]. Geophysics, 2015, 80(5):R239-R250.
[2]
Yin X Y, Cheng G S, Zong Z Y. Non-linear AVO inversion based on a novel exact PP reflection coefficient[J]. Journal of Applied Geophysics, 2018,159:408-417.
[3]
Li K, Yin X Y, Zong Z Y, et al. Seismic AVO statistical inversion incorporating poroelasticity[J]. Petroleum Science, 2020, 17(5):1237-1258.
[4]
Buland A, Omre H. Bayesian linearized AVO inversion[J]. Geophysics, 2003, 68(1):185-198.
Zhang S X, Yin X Y, Zhang F C. Prestack three term inversion method based on Trivariate Cauchy distribution prior constraint[J]. Oil Geophysical Prospecting, 2011, 46(5):737-743,836,663.
Zhang F Q, Wei F J, Wang Y C, et al. Generalized linear AVO inversion with the priori constraint of trivariate cauchy distribution based on Zoeppritz equation[J]. Chinese Journal of Geophysics, 2013, 56(6):2098-2115.
Sa L M, Yao F C, Di B R, et al. Theory and method of seismic identification for fractured-vuggy reservoirs[M]. Beijing: Petroleum Industry Press, 2010.
Liu R H, Zhao J Y, Yin X Y, et al. Strategy of anisotropic parameter tomography inversion in VTI medium[J]. Oil Geophysical Prospecting, 2017, 52(3):484-490,3.
Pan F, Li S J, Qin D W, et al. Direct inversion method for fluid factors and anisotropy parameters in VTI media[J]. Oil Geophysical Prospecting, 2024, 59(4):875-886.
Hou D J, Liu Y, Ren Z M, et al. Multi-wave prestack joint inversion in VTI media based on Bayesian theory[J]. Geophysical Prospecting for Petroleum, 2014, 53(3):294-303.
doi: 10.3969/j.issn.1000-1441.2014.03.007
[12]
Thomsen L. Weak elastic anisotropy[J]. Geophysics, 1986, 51(10):1954-1966.
Chen H Z, Yin X Y, Gao C G, et al. AVAZ inversion for fluid factor based on fracture anisotropic rock physics theory[J]. Chinese Journal of Geophysics, 2014, 57(3):968-978.
Wang B, Zhang F, Dai F C, et al. Study on seismic inversion method of SH-SH wave in VTI media[J]. Chinese Journal of Geophysics, 2023, 66(5):2112-2122.
Xiao Z B, Lei Y C, Yu J Q, et al. Application of broadband data-based extended elastic impedance inversion method in Paleogene lithology prediction of areas at a low exploration level in Lufeng 22 subsag[J]. Geophysical and Geochemical Exploration, 2022, 46(2):392-401.
Shi Y L, Jia S G, Zheng Q G, et al. The application of prestack simultaneous inversion to shallow unconsolidated sandstone reservoir prediction[J]. Geophysical and Geochemical Exploration, 2017, 41(1):9-15.
Zhang D M, Liu Z G, Zang D G, et al. Prediction and identification of gas-bearing properties of tight sandstone reservoirs through simultaneous pre-stack inversion:A case study of block S in Sulige gas field[J]. Geophysical and Geochemical Exploration, 2022, 46(3):645-652.
[18]
Margrave G F. Theory of nonstationary linear filtering in the Fourier domain with application to time-variant filtering[J]. Geophysics, 1998, 63(1):244-259.
Gao J H, Wang L L, Zhao W. Enhancing resolution of seismic traces based on the changing wavelet model of the seismogram[J]. Chinese Journal of Geophysics, 2009, 52(5):1289-1300.
[20]
Margrave G F, Lamoureux M P, Henley D C. Gabor deconvolution:Estimating reflectivity by nonstationary deconvolution of seismic data[J]. Geophysics, 2011, 76(3):W15-W30.
[21]
Chai X T, Wang S X, Wei J X, et al. Reflectivity inversion for attenuated seismic data:Physical modeling and field data experiments[J]. Geophysics, 2016, 81(1):T11-T24.
[22]
Rüger A. Reflection coefficients and azimuthal AVO analysis in anisotropic media[M]. Tulsa,OK: Society of Exploration Geophysicists, 2002.
Pan X P. Study on prestack seismic inversion method of fractured media based on equivalent medium theory[D]. Dongying: China University of Petroleum (Huadong), 2019.
[24]
Zong Z Y, Yin X Y, Wu G C. Elastic impedance parameterization and inversion with Young's modulus and Poisson's ratio[J]. Geophysics, 2013, 78(6):N35-N42.