Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (6): 1595-1601    DOI: 10.11720/wtyht.2023.0266
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于协克里金技术的陆相地层反演低频模型构建方法
陈人杰(), 徐乐意, 刘灵, 朱焕, 易浩, 姜曼
中海石油(中国)有限公司 深圳分公司,广东 深圳 518000
A low frequency model construction method for continental strata inversion based on co-kriging technique
CHEN Ren-Jie(), Xu Le-Yi, LIU Ling, ZHU Huan, YI Hao, JIANG Man
Shenzhen Branch,CNOOC China Limited,Shenzhen 518000,China
全文: PDF(4777 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

低频模型是地震反演的重要组成部分,其准确性直接影响着反演的精度。随着勘探程度的不断加深,中深层陆相地层勘探成为海上勘探的重点领域,陆相地层沉积横向变化快,勘探阶段钻井少,很难通过常规插值方法得到准确的低频模型,制约了地震反演的准确性。针对以上问题,研究了基于协克里金技术的低频模型构建方法,以空间连续测量的地震速度数据为辅变量,以垂向分辨率高的测井数据为主变量,通过协克里金插值将辅变量信息整合到估计结果中,弥补了主变量数据空间测量不足的缺点,得到了高精度的反演低频模型,为少井区建模提供了有效方法。实际资料应用表明,该方法相较于常规方法提高了反演低频模型的精度,提高了储层预测的可靠性,具有广泛的应用前景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈人杰
徐乐意
刘灵
朱焕
易浩
姜曼
关键词 协克里金地震反演低频模型陆相地层储层预测    
Abstract

Low frequency model is an important part of seismic inversion,and its accuracy directly affects the precision of inversion.With the continuous deepening of exploration degree,the exploration of mid-deep continental strata has become a key area of offshore exploration.The lateral variation of sedimentation in continental strata is fast,and there are few wells drilled during the exploration phase.It is difficult to obtain accurate low frequency models through conventional interpolation methods,which restricts the accuracy of seismic inversion.To address these issues,we studied a low frequency model construction method based on co-kriging technology. Using spatially continuous seismic velocity data as auxiliary variables and high-resolution logging data as main variables,we integrated the auxiliary variable information into the estimation results through co-kriging interpolation method,thus compensating for the shortcomings of insufficient spatial measurement of the main variable data and obtaining a high-precision inversion low frequency model.This solves the problem of constructing low frequency models in areas with few wells.Practical application of the data shows that this method improves the accuracy of the inversion low frequency model compared to conventional methods,enhances the reliability of reservoir prediction,and has wide application prospects.

Key wordsco-kriging    seismic inversion    low frequency model    continental strata    reservoir prediction
收稿日期: 2023-06-19      修回日期: 2023-09-28      出版日期: 2023-12-20
:  P631.4  
基金资助:中国海油集团公司“十四五”重大科技项目(KJGG2022-0403)
作者简介: 陈人杰(1988-),男,硕士,工程师,毕业于中国海洋大学,主要从事岩石物理、储层预测研究工作。Email:chenrj13@cnooc.com.cn
引用本文:   
陈人杰, 徐乐意, 刘灵, 朱焕, 易浩, 姜曼. 基于协克里金技术的陆相地层反演低频模型构建方法[J]. 物探与化探, 2023, 47(6): 1595-1601.
CHEN Ren-Jie, Xu Le-Yi, LIU Ling, ZHU Huan, YI Hao, JIANG Man. A low frequency model construction method for continental strata inversion based on co-kriging technique. Geophysical and Geochemical Exploration, 2023, 47(6): 1595-1601.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.0266      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I6/1595
Fig.1  模型经过不同频率范围滤波前后对比
Fig.2  纵波速度与纵波阻抗、横波阻抗交汇
a—纵波速度与纵波阻抗关系;b—纵波速度与横波阻抗关系
Fig.3  地震速度、测井速度特征
a—井点处测井速度与地震速度对比;b—地震速度空间分布特征
Fig.4  目的层沉积相
Fig.5  井插值法纵波阻抗模型沿目的层属性
Fig.6  不同建模方法纵波阻抗沿目的层属性对比
a—反距离加权法;b—协克里金法
Fig.7  不同建模方法纵波阻抗剖面及地震速度剖面特征
a—反距离加权法;b—协克里金法;c—地震速度剖面
Fig.8  目的层段岩石物理分析结果
Fig.9  优质储层预测剖面
[1] 马劲风, 王学军, 谢言光, 等. 波阻抗反演中低频分量构建的经验与技巧[J]. 石油物探, 2000, 39(1):27-34,41.
[1] Ma J F, Wang X J, Xie Y G, et al. Experience and skill of constructing low frequency components in impedance inversion[J]. Geophysical Prospecting for Petroleum, 2000, 39(1):27-34,41.
[2] ten Kroode F, Bergler S, Corsten C, et al. Broadband seismic data:The importance of low frequencies[J]. Geophysics, 2013, 78(2):WA3-WA14.
[3] 叶云飞, 崔维, 张益明, 等. 低频模型对波阻抗反演结果定量解释的影响[J]. 中国海上油气, 2014, 26(6):32-36.
[3] Ye Y F, Cui W, Zhang Y M, et al. Impacts of low-frequency models on the quantitative interpretation of acoustic impedance inversion[J]. China Offshore Oil and Gas, 2014, 26(6):32-36.
[4] Pendrel J. Low frequency models for seismic inversions:Strategies for success[C]// New Orleans: SEG Technical Program Expanded Abstracts 2015,Society of Exploration Geophysicists, 2015:2703-2707.
[5] 许艳秋, 文晓涛, 郝亚炬, 等. 低频信息对阻抗反演的影响分析[J]. 物探化探计算技术, 2015, 37(1):78-82.
[5] Xu Y Q, Wen X T, Hao Y J, et al. Effect analysis of low frequency on acoustic impedance inversion[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2015, 37(1):78-82.
[6] Nasser M, Maguire D, Hansen H J, et al. Prestack 3D and 4D seismic inversion for reservoir static and dynamic properties[J]. The Leading Edge, 2016, 35(5):415-422.
doi: 10.1190/tle35050415.1
[7] 乔凤远, 覃素华, 张宁, 等. 地震低频信息在反演中的作用[J]. 石油地球物理勘探, 2018, 53(S2):266-271.
[7] Qiao F Y, Qin S H, Zhang N, et al. Low-frequency seismic information applied in inversion[J]. Oil Geophysical Prospecting, 2018, 53(S2):266-271.
[8] 马良涛, 范廷恩, 王宗俊, 等. 不同地质条件下反演低频模型构建方法分析[J]. 地球物理学进展, 2021, 36(2):625-635.
[8] Ma L T, Fan T E, Wang Z J, et al. Analysis on construction method of inversion low frequency model under different geological conditions[J]. Progress in Geophysics, 2021, 36(2):625-635.
[9] 肖张波, 雷永昌, 于骏清, 等. 基于宽频资料的扩展弹性阻抗反演方法在陆丰22洼陷低勘探区古近系岩性预测中的应用[J]. 物探与化探, 2022, 46(2):392-401.
[9] Xiao Z B, Lei Y C, Yu J Q, et al. Application of broadband data-based extended elastic impedance inversion method in Paleogene lithology prediction of areas at a the low exploration level in Lufeng 22 subsag[J]. Geophysical and Geochemical Exploration, 2022, 46(2):392-401.
[10] Li Z, Heap A D, Potter A. Co-kriging of soil properties with limited data[J]. Geoderma, 2011, 163(3-4):189-195.
[11] Zhang T, Liu X. A co-kriging method for high-dimensional spatial data interpolation and prediction[J]. Stochastic Environmental Research and Risk Assessment, 2019, 30(6):1565-1578.
doi: 10.1007/s00477-015-1169-3
[12] Tong X F, Pan Y Z, Tong F Y, et al. Modeling and prediction of the spatiotemporal dynamics of Nitrogen dioxide concentrations using Landsat imagery and meteorological data in Beijing,China[J]. Remote Sensing, 2019, 11(18):2075.
doi: 10.3390/rs11182075
[13] Lee J H, Jung Y S. Co-Kriging with non-stationary variance:A case study of surface ozone concentration over South Korea[J]. Atmospheric Environment, 2010, 44(9):1150-1161.
[14] 闫星光, 吴琳娜, 周涌, 等. 喀斯特地区月均降水协克里金插值方法研究——以贵州省为例[J]. 云南大学学报:自然科学版, 2017, 39(3):432-439.
[14] Yan X G, Wu L N, Zhou Y, et al. On the association of co-kriging interpolation method research based on GIS:A case study in Karst area of Guizhou Province[J]. Journal of Yunnan University:Natural Sciences Edition, 2017, 39(3):432-439.
[15] 陈根华, 莫正威. 基于协克里金的雨量雷达融合置信处理方法[J]. 南昌工程学院学报, 2022, 41(3):64-71.
[15] Chen G H, Mo Z W. A fusion-based confidence processing algorithm for regional rainfall radar based on Co-Kriging[J]. Journal of Nanchang Institute of Technology, 2022, 41(3):64-71.
[16] 徐炳生, 王伟, 徐颖, 等. 基于协同克里金的大坝心墙渗流空间模型研究[J]. 水电能源科学, 2022, 40(7):98-101.
[16] Xu B S, Wang W, Xu Y, et al. Research on spatial model for core-wall seepage of dams based on cooperative Kriging[J]. Water Resources and Power, 2022, 40(7):98-101.
[17] 朱金强. 类弹性阻抗反演在海水特性研究中的应用[D]. 青岛: 中国海洋大学, 2014.
[17] Zhu J Q. Application of allied elastic impedance inversion on the study of ocean characteristics[D]. Qingdao: Ocean University of China, 2014.
[18] Krige D G. A statistical approach to some basic mine valuationproblems on the Witwatersrand[J]. J. Chem. Metall Min Soc. South Afr., 1951, 52(6):119.
[19] Stein M L, Chiles J P, Delfiner P. Geostatistics:Modeling spatial uncertainty[J]. Journal of the American Statistical Association, 2000, 95(449):335.
doi: 10.2307/2669569
[20] 印兴耀, 刘永社. 储层建模中地质统计学整合地震数据的方法及研究进展[J]. 石油地球物理勘探, 2002, 37(4):423-430,432.
[20] Yin X Y, Liu Y S. Methods and development of integrating seismic data in reservoir model-building[J]. Oil Geophysical Prospecting, 2002, 37(4):423-430,432.
[1] 史全党, 孔令业, 吴超, 丁艳雪, 刘泽民, 于雪, 王江. 基于小波边缘分析与井—震联合建模的波阻抗反演技术在陆梁隆起带储层预测中的应用[J]. 物探与化探, 2023, 47(6): 1425-1432.
[2] 宋晨, 金吉能, 潘仁芳, 朱博远, 喻志骅, 唐小玲. 分频AVO技术在安岳气田须二段储层含气性分析中的应用[J]. 物探与化探, 2023, 47(3): 681-689.
[3] 冯鑫. 平点技术在西非深水碎屑岩储层烃检中的应用[J]. 物探与化探, 2022, 46(2): 433-443.
[4] 肖张波, 雷永昌, 于骏清, 吴琼玲, 杨超群. 基于宽频资料的扩展弹性阻抗反演方法在陆丰22洼陷低勘探区古近系岩性预测中的应用[J]. 物探与化探, 2022, 46(2): 392-401.
[5] 王成泉, 王孟华, 周佳宜, 王盛亮, 杨洲鹏, 刘慧, 张红文. 多属性融合定量储层预测方法研究与应用——以廊固凹陷杨税务潜山为例[J]. 物探与化探, 2022, 46(1): 87-95.
[6] 刘鸿洲, 王孟华, 张浩, 彭玲丽, 李雯, 张杰, 赵智鹏, 伍泽荆. 基于分频构形反演方法的河道砂精准预测——以华北冀中探区赵皇庄地区为例[J]. 物探与化探, 2021, 45(5): 1311-1319.
[7] 刘家材, 张冲, 韩绪军. 哈萨克斯坦B油田M02段综合地震储层预测[J]. 物探与化探, 2021, 45(2): 379-386.
[8] 刘浩杰, 陈雨茂, 王延光, 宗兆云, 吴国忱, 侯庆杰. 粘弹介质叠前四参数同步反演及应用[J]. 物探与化探, 2021, 45(1): 140-148.
[9] 孔省吾, 张云银, 沈正春, 张建芝, 魏红梅, 宋艳阁, 王甜. 波形指示反演在灰质发育区薄互层浊积岩预测中的应用——以牛庄洼陷沙三中亚段为例[J]. 物探与化探, 2020, 44(3): 665-671.
[10] 杨雪, 裴家学, 何绍勇, 蒋学峰, 谢天寿, 高建军. 煤层发育条件下薄储层预测方法研究[J]. 物探与化探, 2020, 44(2): 406-411.
[11] 晋达, 杜浩坤, 孟凡冰, 秦广胜, 苏云, 李娜. 普光地区长兴组生物礁储层分布预测[J]. 物探与化探, 2020, 44(1): 50-58.
[12] 沙志彬, 万晓明, 赵忠泉, 梁金强, 杨瑞召, 白钰, 柴祎. 叠前同时反演技术在珠江口盆地西部海域天然气水合物储层预测中的应用[J]. 物探与化探, 2019, 43(3): 476-485.
[13] 国春香, 郭淑文, 朱伟峰, 袁雪花, 彭雪梅, 邢兴, 陈明旭. 河流相砂泥岩薄互层预测方法研究与应用[J]. 物探与化探, 2018, 42(3): 594-599.
[14] 吕振宇, 边立恩, 于娅, 王军. 地震正演技术在主控物源研究中的应用[J]. 物探与化探, 2018, 42(2): 276-284.
[15] 凌云, 杜向东, 曹思远. FAVO反演技术及其在深水砂岩储层中的应用[J]. 物探与化探, 2018, 42(1): 161-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com