Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (2): 433-443    DOI: 10.11720/wtyht.2022.2489
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
平点技术在西非深水碎屑岩储层烃检中的应用
冯鑫
中国海洋石油国际有限公司,北京 100028
Application of flat spots in detection of hydrocarbons in deep-water clastic reservoirs in West Africa
FENG Xin
CNOOC International Co.,Ltd.,Beijing 100028,China
全文: PDF(9178 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

针对西非深水碎屑岩储层部分高孔隙度含水砂岩和含油砂岩具有相似振幅亮点和远道振幅增强的三类AVO异常的难题,提出运用平点技术进行储层烃类检测。通过地震反射几何外形、振幅及相位等信息落实研究区发育短轴单平点、短轴双平点、短轴复合单平点和长轴复合单平点4种类型,W目标目的层以短轴双平点为主。在以反射系数和地层倾角为核心参数进行正演模拟的基础上,建立了地震平点反射产生的定量判别模板。运用平点强化技术及共等值线抽道集叠加技术,落实了平点分布。通过烃类平点的判别依据,推测上部平点条带代表气油界面、下部平点条带代表油水界面。结合烃检敏感属性分析,有效预测了含油气面积。平点技术的应用,降低了储层烃检的多解性,提高了预测精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯鑫
关键词 储层预测平点技术模型正演定量模板平点识别烃类平点    
Abstract

Aiming at the difficulties that some high-porosity water-bearing sandstones and oil-bearing sandstones in deep-water clastic reservoirs in West Africa have similar amplitude bright spots and show Class III AVO anomalies with remote-trace amplitude enhancement,this paper proposes to use flat spots to detect the hydrocarbons in the reservoirs.As revealed by the data on the geometric shapes,amplitude,and phase of seismic reflection,four types of flat spots are have developed in the study area,namely individual flat spots,short-axis double flat spots,short-axis composite individual flat spots,and long-axis composite individual flat spots.The target layer W is dominated by short-axis double flat spots.Based on the forward modeling with reflection coefficients and stratigraphic dip as core parameters,a quantitative discrimination template of seismic reflection of flat spots was established in this study.The flat spot distribution was determined using the flat spot strengthening technology and the common isoline trace gathering stacking technology.It was inferred from the discrimination criteria of hydrocarbon flat spots that the upper flat spot strips represent gas-oil interfaces and the lower flat spot strips represent oil-water interfaces.Based on this and the analysis of sensitive attributes in hydrocarbon detection,the area of oil- and gas-bearing zones was effectively predicted.Therefore,the application of flat spots can reduce the multiplicity of solution in the hydrocarbon detection and improve the prediction accuracy of reservoirs.

Key wordsreservoir prediction    flat spots    forward modeling    quantitative template    flat spot identification    flat spots of hydrocarbons
收稿日期: 2020-12-21      修回日期: 2021-11-02      出版日期: 2022-04-20
ZTFLH:  P631.4  
基金资助:国家科技重大专项项目“非洲重点区油气勘探潜力综合评价”(2017ZX05032-002);中海油综合科研项目“大西洋被动陆缘重点盆地漂移层系油气藏勘探综合评价技术研究”(YXKY-2021-ZY-01)
作者简介: 冯鑫(1986-),男,2013年中国地质大学(北京)硕士毕业,工程师,主要从事海外油气勘探地震解释及综合评价工作。
引用本文:   
冯鑫. 平点技术在西非深水碎屑岩储层烃检中的应用[J]. 物探与化探, 2022, 46(2): 433-443.
FENG Xin. Application of flat spots in detection of hydrocarbons in deep-water clastic reservoirs in West Africa. Geophysical and Geochemical Exploration, 2022, 46(2): 433-443.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.2489      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I2/433
Fig.1  研究区目标及已钻井位置示意
Fig.2  平点类型示意
识别特征 平点类型
几何外形 ①短轴单平点; ②短轴双平点; ③短轴复合平点; ④长轴单平点; ⑤长轴双平点
振幅及相位 ①亮点型平点; ②暗点型平点; ③相位反转型平点
平面特征 烃类平点:条带状分布,与构造等值线及振幅异常边界吻合
Table 1  地震平点类型
Fig.3  平点强化技术原理示意
Fig.4  共等值线抽道集叠加原理示意
Fig.5  常规三维深度域地震(a)与高密度三维深度域地震平点反射(b)对比
Fig.6  研究区4类地震平点
a—短轴双平点;b—短轴单平点;c—短轴复合平点;d—长轴平点
Fig.7  平点强化参数优选
Fig.8  常规剖面(a)和平点强化剖面(b)
Fig.9  通过共等值线叠加得到的振幅与频率变化剖面
Fig.10  不同反射系数产生的平点正演模型
Fig.11  单层与多个薄互层条件下的正演模型
Fig.12  固定反射系数、改变地层倾角的正演模型模拟结果
Fig.13  地震平点反射定量判别模板
Fig.14  单流体界面(a)和双流体界面(b)正演模型
Fig.15  已发现油气田含不同流体砂岩/围岩定量振幅比统计量版(a)与目标振幅比属性(b)对比
[1] 赵争光, 杨瑞召, 马彦龙, 等. 共等值线抽道集叠加识别油气水界面方法及其应用[J]. 天然气地球科学, 2013, 24(4):808-814.
[1] Zhao Z G, Yang R Z, Ma Y L, et al. Method for pinpointing the contacts of oil, gas and water by common contour binning stacking and its application[J]. Natural Gas Geoscience, 2013, 24(4):808-814.
[2] 冯鑫, 张树林, 范洪耀, 等. 地震平点技术与应用进展[J]. 海洋地质前沿, 2019, 35(6):1-11.
[2] Feng X, Zhang S L, Fan H Y, et al. Review of progresses in seismic flat spot technology[J]. Marine Geology Frontiers, 2019, 35(6):1-11.
[3] Backus M M, Chen R L. Flat spot exploration[J]. Geophysical Prospecting, 1975, 23(3):533-577.
doi: 10.1111/j.1365-2478.1975.tb01547.x
[4] Rob S, Mike B. 地震振幅解释与应用[M]. 北京: 石油工业出版社, 2014:73-92.
[4] Rob S, Mike B. Seismic amplitude:An interpreter's handbook[M]. Beijing: Petroleum Industry Press, 2014:73-92.
[5] Alistair R Brown. 三维地震数据解释[M]. 北京: 石油工业出版社, 2015:115-138.
[5] Alistair R B. Interpretation of three-dimensional seismic data[M]. Beijing: Petroleum Industry Press, 2015:115-138.
[6] Clark V A. The effect of oil under in-situ conditions on the seismic properties of rocks[J]. Geophysics, 1992, 57(7):894-901.
doi: 10.1190/1.1443302
[7] Cliff D C B, Tye S C, Taylor R. The Thylacine and Ceographe gas discoveries,offshore Eastern Otway Basin[J]. Appea Journal, 2004, 44(1):441-462.
doi: 10.1071/AJ03017
[8] Francis A, Millwood H M, Mulholland P, et al. Real and relict hydrocarbon indicators in the East Irish Sea Basin[J]. Geological Society London Special Publications, 1997, 124(1):185-194.
doi: 10.1144/GSL.SP.1997.124.01.11
[9] Greenlee S M, Gaskins G M, Johnson M G. 3-D seismic benefits from exploration through development:An Exxon perspective[J]. The Leading Edge, 1994, 13(7):730-734.
doi: 10.1190/1.1437031
[10] Luchford J. A view of amplitude fit to structure as a hydrocarbon-indicating attribute[J]. First Break, 2001, 19(7):411-417.
doi: 10.1046/j.1365-2397.2001.00190.x
[11] 史晓辉, 何亨华. 柴达木盆地一个可能的地震平点异常的解释与分析[J]. 天然气地球科学, 2009, 20(4):586-591.
[11] Shi X H, He H H. Interpretation and analysis of a potential flat spot anomaly[J]. Natural Gas Geoscience, 2009, 20(4):586-591.
[12] 潘光超, 裴健翔, 周家雄, 等. 莺歌海盆地中深层超压带气水界面平点特征分析[J]. 中国海上油气, 2014, 26(5):42-46.
[12] Pan G C, Pei J X, Zhou J X, et al. An analysis of flat spot features on a gas-water interface in the middle-deep overpressure zone,Yinggehai basin[J]. China Offshore Oil and Gas, 2014, 26(5):42-46.
[13] 张德林. 大嘴子气藏“平点”的倾斜产状与成因[J]. 石油地球物理勘探, 2000, 35(5):608-616.
[13] Zhang D L. Dip “flatspot” and its generating mechanism in Dazuizi gas accumulation[J]. Oil Geophysical Prospecting, 2000, 35(5):608-616.
[14] 王兴谋. 济阳拗陷浅、中层天然气藏地震预测技术[J]. 石油地球物理勘探, 2005, 40(3):322-327.
[14] Wang X M. Seismic prediction of mid-shallow gas reservoirs in Jiyang Depression[J]. Oil Geophysical Prospecting, 2005, 40(3):322-327.
[15] 邓勇, 潘光超, 李明, 等. 莺歌海盆地“平点”叠前AVO特征及识别[J]. 石油地球物理勘探, 2019, 54(5):1123-1130.
[15] Deng Y, Pan G G, Li M, et al. Prestack AVO characteristics and identification of flat spot in Yinggehai Basin[J]. Oil Geophysical Prospecting, 2019, 54(5):1123-1130.
[16] 高少武, 钱忠平, 马玉宁, 等. OBC水陆检数据合并处理技术[J]. 石油地球物理勘探, 2018, 53(4):703-709.
[16] Gao S W, Qian Z P, Ma Y N, et al. OBC dual-sensor data combination processing[J]. Oil Geophysical Prospecting, 2018, 53(4):703-709.
[17] 龚明平, 张军华, 王延光, 等. 分方位地震勘探研究现状及进展[J]. 石油地球物理勘探, 2018, 53(3):642-658.
[17] Gong M P, Zhang J H, Wang Y G, et al. Current situations and recent progress in different azimuths seismic exploration[J]. Oil Geophysical Prospecting, 2018, 53(3):642-658.
[18] 冯鑫, 韩文明, 范洪耀. 西非深水目标高密度三维地震勘探效果[J]. 石油物探, 2020, 59(1):150-157.
[18] Feng X, Han W M, Fan H Y. High density 3D seismic exploration of deep water targets in West Africa[J]. Geophysical Prospecting for Petroleum, 2020, 59(1):150-157.
[19] 徐磊, 汪思源, 张建清, 等. 近垂直反射正演模拟及其地下工程应用[J]. 物探与化探, 2020, 44(3):635-642.
[19] Xu L, Wang S Y, Zhang J Q, et al. Forward simulation of approximate vertical reflection method and its application to underground engineering[J]. Geophysical and Geochemical Exploration, 2020, 44(3):635-642.
[20] 谭磊, 刘宏, 唐昱哲, 等. 四川盆地龙女寺构造龙王庙组储层特征及地震响应[J]. 天然气地球科学, 2020, 31(12):1802-1813.
[20] Tan L, Liu H, Tang Y Z, et al. Reservoir characteristics and seismic response of Longwangmiao Formation of Longnvsi structure in Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(12):1802-1813.
[1] 宋晨, 金吉能, 潘仁芳, 朱博远, 喻志骅, 唐小玲. 分频AVO技术在安岳气田须二段储层含气性分析中的应用[J]. 物探与化探, 2023, 47(3): 681-689.
[2] 张德明, 刘志刚, 臧殿光, 廖显锋, 刘志毅, 刘国宝. 基于叠前同时反演的致密砂岩储层预测及含气性识别——以苏里格S区块为例[J]. 物探与化探, 2022, 46(3): 645-652.
[3] 王成泉, 王孟华, 周佳宜, 王盛亮, 杨洲鹏, 刘慧, 张红文. 多属性融合定量储层预测方法研究与应用——以廊固凹陷杨税务潜山为例[J]. 物探与化探, 2022, 46(1): 87-95.
[4] 刘鸿洲, 王孟华, 张浩, 彭玲丽, 李雯, 张杰, 赵智鹏, 伍泽荆. 基于分频构形反演方法的河道砂精准预测——以华北冀中探区赵皇庄地区为例[J]. 物探与化探, 2021, 45(5): 1311-1319.
[5] 刘家材, 张冲, 韩绪军. 哈萨克斯坦B油田M02段综合地震储层预测[J]. 物探与化探, 2021, 45(2): 379-386.
[6] 刘浩杰, 陈雨茂, 王延光, 宗兆云, 吴国忱, 侯庆杰. 粘弹介质叠前四参数同步反演及应用[J]. 物探与化探, 2021, 45(1): 140-148.
[7] 孔省吾, 张云银, 沈正春, 张建芝, 魏红梅, 宋艳阁, 王甜. 波形指示反演在灰质发育区薄互层浊积岩预测中的应用——以牛庄洼陷沙三中亚段为例[J]. 物探与化探, 2020, 44(3): 665-671.
[8] 杨雪, 裴家学, 何绍勇, 蒋学峰, 谢天寿, 高建军. 煤层发育条件下薄储层预测方法研究[J]. 物探与化探, 2020, 44(2): 406-411.
[9] 晋达, 杜浩坤, 孟凡冰, 秦广胜, 苏云, 李娜. 普光地区长兴组生物礁储层分布预测[J]. 物探与化探, 2020, 44(1): 50-58.
[10] 沙志彬, 万晓明, 赵忠泉, 梁金强, 杨瑞召, 白钰, 柴祎. 叠前同时反演技术在珠江口盆地西部海域天然气水合物储层预测中的应用[J]. 物探与化探, 2019, 43(3): 476-485.
[11] 国春香, 郭淑文, 朱伟峰, 袁雪花, 彭雪梅, 邢兴, 陈明旭. 河流相砂泥岩薄互层预测方法研究与应用[J]. 物探与化探, 2018, 42(3): 594-599.
[12] 吕振宇, 边立恩, 于娅, 王军. 地震正演技术在主控物源研究中的应用[J]. 物探与化探, 2018, 42(2): 276-284.
[13] 凌云, 杜向东, 曹思远. FAVO反演技术及其在深水砂岩储层中的应用[J]. 物探与化探, 2018, 42(1): 161-165.
[14] 石亚兰, 贾曙光, 郑求根, 李俊威, 薛明喜. 叠前同时反演在浅层疏松砂岩储层预测中的应用[J]. 物探与化探, 2017, 41(1): 9-15.
[15] 何丽娟, 王振峰, 邓勇, 张毅, 钟泽红, 张志让, 王利杰. 虚拟井技术在琼东南深水区储层预测中的应用[J]. 物探与化探, 2016, 40(2): 390-397.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com