Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (6): 1425-1432    DOI: 10.11720/wtyht.2023.1580
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
基于小波边缘分析与井—震联合建模的波阻抗反演技术在陆梁隆起带储层预测中的应用
史全党1, 孔令业1, 吴超1(), 丁艳雪1, 刘泽民1, 于雪1, 王江2()
1.中国石油新疆油田公司采气一厂,新疆 克拉玛依 834000
2.中国石油大庆油田有限责任公司 勘探开发研究院,黑龙江 大庆 163712
Application of wave impedance inversion technology based on wavelet edge analysis and combined well-seismic modeling in reservoir prediction of Luliang uplift zone
SHI Quan-Dang1, KONG Ling-Ye1, WU Chao1(), DING Yan-Xue1, LIU Ze-Min1, YU Xue1, WANG Jiang2()
1. PetroChina Xinjiang Oilfield Company Gas Production Plant No.1,Karamay 834000,China
2. Exploration and Development Research Institute of Daqing Oilfield Co.,Ltd.,Daqing 163712,China
全文: PDF(3342 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

针对准噶尔盆地陆梁隆起断裂构造复杂、储层横向非均质性强、含气砂体小而薄预测难的问题,应用小波边缘分析与井—震联合建模的波阻抗反演技术,从地震记录中直接提取反映构造和岩性变化的地震属性特征参数,与测井声波阻抗数据一起建立初始模型并参与波阻抗模型的扰动修改。此反演技术弥补了井间插值建模过程中井间高频成分的缺失和井间岩性的局部变化细节,避免了常规波阻抗反演过程中由于初始模型不准确而产生的错误信息,提高了地震资料识别“小而薄”砂体的分辨能力。结果表明:受东部克拉美丽山物源控制,在陆梁隆起带DX14井区梧桐沟组形成扇三角洲—半深湖(深湖)沉积体系;发育一系列扇三角洲前缘砂体。实际钻井结果与钻前预测对比表明,井点处预测砂岩厚度的绝对误差小于0.60 m,相对均方误差小于2.84%,预测精度满足精细储层预测要求。研究成果可为精细油藏描述和井位部署提供依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史全党
孔令业
吴超
丁艳雪
刘泽民
于雪
王江
关键词 小波边缘分析井—震联合建模波阻抗反演储层预测地震属性特征参数DX14井区陆梁隆起带    
Abstract

The Luliang uplift zone in the Junggar Basin exhibits intricate fault structures,laterally heterogeneous reservoirs,and small-scale and thin gas-bearing sand bodies,presenting challenges in reservoir prediction.Hence,this study applied the wave impedance inversion technology based on wavelet edge analysis and well-seismic joint modeling to directly extract seismic attributes' characteristic parameters that reflect structural and lithological changes from seismic records.These seismic attribute characteristic parameters were used to build the initial model together with acoustic impedance logs and participated in disturbance modification of the wave impedance model.This inversion technology counteracted the lack of inter-well high-frequency components and the inter-well local lithologic changes during the inter-well interpolation modeling and avoided error information caused by the inaccurate initial model in the conventional wave impedance inversion,thus improving the resolution of seismic data in identifying small-scale and thin sand bodies.The results show that under the control of the provenance of the Kelameili Mountain in the east,a fan delta-semideep (deep) lacustrine sedimentary system formed in the Wutonggou Formation in the DX14 well area of the Luliang uplift zone,hosting many fan delta-front sand bodies.The comparison between the actual drilling results and the pre-drilling prediction results indicates that the absolute error and relative mean error of sandstone thickness prediction at the well site were less than 0.60 m and less than 2.84%,respectively,suggesting that the prediction accuracy meets the requirements of fine-scale reservoir prediction.The research results provide a guide for fine-scale reservoir description and well deployment.

Key wordswavelet edge analysis    well-seismic joint modeling    impedance inversion    reservoir prediction    seismic attribute characteristic parameter    DX14 well area    Luliang uplift zone
收稿日期: 2022-12-16      修回日期: 2023-09-08      出版日期: 2023-12-20
:  P631.4  
基金资助:国家重大科技专项“大型油气田及煤层气开发”(2011ZX05001-001-004)
通讯作者: 王江(1966-),男,博士,高级工程师,主要从事地震勘探数据处理、解释方法技术研究工作。Email:wangjiaang@petrochina.com.cn
作者简介: 吴超(1991-),男,高级工程师,主要从事油田勘探及油藏评价工作。Email:wuchao12@petrochina.com.cn
引用本文:   
史全党, 孔令业, 吴超, 丁艳雪, 刘泽民, 于雪, 王江. 基于小波边缘分析与井—震联合建模的波阻抗反演技术在陆梁隆起带储层预测中的应用[J]. 物探与化探, 2023, 47(6): 1425-1432.
SHI Quan-Dang, KONG Ling-Ye, WU Chao, DING Yan-Xue, LIU Ze-Min, YU Xue, WANG Jiang. Application of wave impedance inversion technology based on wavelet edge analysis and combined well-seismic modeling in reservoir prediction of Luliang uplift zone. Geophysical and Geochemical Exploration, 2023, 47(6): 1425-1432.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1580      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I6/1425
Fig.1  波阻抗重构前(a)、后(b)的电阻率与波阻抗交汇
Fig.2  DX14井区三维L1036地震剖面
Fig.3  DX14井区三维L1036边缘检测特征点剖面
Fig.4  L1036线测井阻抗低频模型
Fig.5  井震统一的AIW波阻抗反演模型
Fig.6  AIW波阻抗反演(a)与常规基于模型波阻抗反演(b)剖面对比
Fig.7  DX14井区梧桐沟组一段P3w t 1 2 AIW波阻抗反演(a)与常规基于模型波阻抗反演(b)波阻抗平面
[1] Li G F, Zhou H, Zhao C. Potential risks of spectrum whitening deconvolution—Compared with well-driven deconvolution[J] .Petroleum Science, 2009, 6(2):146-152.
doi: 10.1007/s12182-009-0023-y
[2] 王江, 涂国田, 王杰. 基于载波调制的高分辨率地震双向拓频技术及其应用[J]. 石油物探, 2021, 60(6):954-963.
doi: 10.3969/j.issn.1000-1441.2021.06.009
[2] Wang J, Tu G T, Wang J. High-resolution seismic bidirectional frequency extension based on carrier modulation[J]. Geophysical Prospecting for Petroleum, 2021, 60(6):954-963.
doi: 10.3969/j.issn.1000-1441.2021.06.009
[3] 王华忠, 盛燊. 走向精确地震勘探的道路[J]. 石油物探, 2021, 60(5):693-708,720.
doi: 10.3969/j.issn.1000-1441.2021.05.001
[3] Wang H Z, Sheng S. Pathway toward accurate seismic exploration[J]. Geophysical Prospecting for Petroleum, 2021, 60(5):693-708,720.
doi: 10.3969/j.issn.1000-1441.2021.05.001
[4] 纪永祯, 张渝悦, 朱立华, 等. 基于SBL-WVD 的地震高分辨率时频分析[J]. 石油物探, 2020, 59(1):80-86,107.
doi: 10.3969/j.issn.1000-1441.2020.01.009
[4] Ji Y Z, Zhang Y Y, Zhu L H, et al. High-resolution seismic time-frequency analysis based on sparse Bayesian learning combined with Wigner-Ville distribution[J]. Geophysical Prospecting for Petroleum, 2020, 59(1):80-86,107.
doi: 10.3969/j.issn.1000-1441.2020.01.009
[5] 肖张波, 雷永昌, 于骏清, 等. 基于宽频资料的扩展弹性阻抗反演方法在陆丰22洼陷低勘探区古近系岩性预测中的应用[J]. 物探与化探, 2022, 46(2):392-401.
[5] Xiao Z B, Lei Y C, Yu J Q, et al. Application of broadband data-based extended elastic impedance inversion method in Paleogene lithology prediction of areas at a low exploration level in Lufeng 22 subsag[J]. Geophysical and Geochemical Exploration, 2022, 46(2):392-401.
[6] 张德明, 刘志刚, 臧殿光, 等. 基于叠前同时反演的致密砂岩储层预测及含气性识别——以苏里格S区块为例[J]. 物探与化探, 2022, 46(3):645-652.
[6] Zhang D M, Liu Z G, Zang D G, et al. Prediction and identification of gas-bearing properties of tight sandstone reservoirs through simultaneous prestack inversion:A case study of block S in Sulige gas field[J]. Geophysical and Geochemical Exploration, 2022, 46(3):645-652.
[7] 姜勇, 秦德文, 俞伟哲, 等. 东海某凹陷大型砂体优势储层预测技术研究与应用[J]. 石油物探, 2020, 59(6):949-960.
doi: 10.3969/j.issn.1000-1441.2020.06.013
[7] Jiang Y, Qin D W, Yu W Z, et al. Prediction of favorable reservoirs in large sandstone reservoirs in a sag of the East China Sea[J]. Geophysical Prospecting for Petroleum, 2020, 59(6):949-960.
[8] 杜向东. 中国海上地震勘探技术新进展[J]. 石油物探, 2018, 57(3):321-331.
doi: 10.3969/j.issn.1000-1441.2018.03.001
[8] Du X D. Progress of seismic exploration technology in offshore China[J]. Geophysical Prospecting for Petroleum, 2018, 57(3):321-331.
doi: 10.3969/j.issn.1000-1441.2018.03.001
[9] 宁宏晓, 唐东磊, 皮红梅, 等. 国内陆上“两宽一高”地震勘探技术及发展[J]. 石油物探, 2019, 58(5):645-653.
doi: 10.3969/j.issn.1000-1441.2019.05.002
[9] Ning H X, Tang D L, Pi H M, et al. The technology and development of "WBH" seismic exploration in land,China[J]. Geophysical Prospecting for Petroleum, 2019, 58(5):645-653.
[10] 董世泰, 张研. 成熟探区物探技术发展方向——以中石油成熟探区为例[J]. 石油物探, 2019, 58(2):155-161,186.
doi: 10.3969/j.issn.1000-1441.2019.02.001
[10] Dong S T, Zhang Y. Geophysical technical development direction of mature exploration areas:A case study from a mature exploration area of PetroChina[J]. Geophysical Prospecting for Petroleum, 2019, 58(2):155-161,186.
[11] 姚逢昌, 甘利灯. 地震反演的应用与限制[J]. 石油勘探与开发, 2000, 27(2):53-56.
[11] Yao F C, Gan L D. Application and restriction of seismic inversion[J]. Petroleum Exploration and Development, 2000, 27(2):53-56.
[12] 李国发, 王艳仓, 熊金良, 等. 地震波阻抗反演实验分析[J]. 石油地球物理勘探, 2010, 45(6):868-872.
[12] Li G F, Wang Y C, Xiong J L, et al. Experimental analysis on seismic wave impedance inversion[J]. Oil Geophysical Prospecting, 2010, 45(6):868-872.
[13] 刘海宁, 韩宏伟, 魏文, 等. YD高密度三维区沙四段灰岩有利储层地震预测[J]. 物探与化探, 2021, 45(5):1281-1287.
[13] Liu H N, Han H W, Wei W, et al. Seismic prediction of favorable limestone reservoirs in the fourth member of Shahejie Formation in YD high density 3D area[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1281-1287.
[14] 许崇宝, 刘东源. 小波边缘分析建模波阻抗反演方法在煤层解释中的应用[J]. 中国煤炭地质, 2008, 20(2):43-45.
[14] Xu C B, Liu D Y. Application of wavelet marginal analytical modeling wave impedance inversion in coal seam interpretation[J]. Coal Geology of China, 2008, 20(2):43-45.
[15] 崔永福, 彭更新, 李国会, 等. 基于小波边缘分析建模的波阻抗反演技术[J]. 新疆石油地质, 2009, 30(2):261-263.
[15] Cui Y F, Peng G X, Li G H, et al. Acoustic impedance inversion based on wavelet edge analysis and modeling[J]. Xinjiang Petroleum Geology, 2009, 30(2):261-263.
[16] 谢裕江, 刘高. 小波边缘分析与建模的波阻抗反演算法的改进——以中国MOU气田盒8段储层分布预测为例[J]. 浙江大学学报:工学版, 2013, 47(9):1680-1684,1696.
[16] Xie Y J, Liu G. Algorithmic modification of acoustic impedance inversion based on wavelet edge analysis and modelling:a case of reservoir distribution prediction in h8 segment of MOU gas field,China[J]. Journal of Zhejiang University:Engineering Science, 2013, 47(9):1680-1684,1696.
[17] Ingber L. Very fast simulated re-annealing[J]. Mathematical and Computer Modelling, 1989, 12(8):967-973.
doi: 10.1016/0895-7177(89)90202-1
[18] Huang X R, Chopra A, Yang C T. Wavelet sensitivity study on inversion using heuristic combinatorial algorithms[J]. Seg Technical Program Expanded Abstracts, 1995:1088-1090.
[1] 王康, 刘彩云, 熊杰, 王永昌, 胡焕发, 康佳帅. 基于全卷积残差收缩网络的地震波阻抗反演[J]. 物探与化探, 2023, 47(6): 1538-1546.
[2] 陈人杰, 徐乐意, 刘灵, 朱焕, 易浩, 姜曼. 基于协克里金技术的陆相地层反演低频模型构建方法[J]. 物探与化探, 2023, 47(6): 1595-1601.
[3] 宋晨, 金吉能, 潘仁芳, 朱博远, 喻志骅, 唐小玲. 分频AVO技术在安岳气田须二段储层含气性分析中的应用[J]. 物探与化探, 2023, 47(3): 681-689.
[4] 朱剑兵, 高照奇, 田亚军, 梁兴城. 带有横向约束的全局优化波阻抗反演方法及应用[J]. 物探与化探, 2022, 46(6): 1477-1484.
[5] 冯鑫. 平点技术在西非深水碎屑岩储层烃检中的应用[J]. 物探与化探, 2022, 46(2): 433-443.
[6] 王成泉, 王孟华, 周佳宜, 王盛亮, 杨洲鹏, 刘慧, 张红文. 多属性融合定量储层预测方法研究与应用——以廊固凹陷杨税务潜山为例[J]. 物探与化探, 2022, 46(1): 87-95.
[7] 刘鸿洲, 王孟华, 张浩, 彭玲丽, 李雯, 张杰, 赵智鹏, 伍泽荆. 基于分频构形反演方法的河道砂精准预测——以华北冀中探区赵皇庄地区为例[J]. 物探与化探, 2021, 45(5): 1311-1319.
[8] 刘家材, 张冲, 韩绪军. 哈萨克斯坦B油田M02段综合地震储层预测[J]. 物探与化探, 2021, 45(2): 379-386.
[9] 刘浩杰, 陈雨茂, 王延光, 宗兆云, 吴国忱, 侯庆杰. 粘弹介质叠前四参数同步反演及应用[J]. 物探与化探, 2021, 45(1): 140-148.
[10] 孔省吾, 张云银, 沈正春, 张建芝, 魏红梅, 宋艳阁, 王甜. 波形指示反演在灰质发育区薄互层浊积岩预测中的应用——以牛庄洼陷沙三中亚段为例[J]. 物探与化探, 2020, 44(3): 665-671.
[11] 杨雪, 裴家学, 何绍勇, 蒋学峰, 谢天寿, 高建军. 煤层发育条件下薄储层预测方法研究[J]. 物探与化探, 2020, 44(2): 406-411.
[12] 晋达, 杜浩坤, 孟凡冰, 秦广胜, 苏云, 李娜. 普光地区长兴组生物礁储层分布预测[J]. 物探与化探, 2020, 44(1): 50-58.
[13] 沙志彬, 万晓明, 赵忠泉, 梁金强, 杨瑞召, 白钰, 柴祎. 叠前同时反演技术在珠江口盆地西部海域天然气水合物储层预测中的应用[J]. 物探与化探, 2019, 43(3): 476-485.
[14] 国春香, 郭淑文, 朱伟峰, 袁雪花, 彭雪梅, 邢兴, 陈明旭. 河流相砂泥岩薄互层预测方法研究与应用[J]. 物探与化探, 2018, 42(3): 594-599.
[15] 吕振宇, 边立恩, 于娅, 王军. 地震正演技术在主控物源研究中的应用[J]. 物探与化探, 2018, 42(2): 276-284.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com