Numerical simulation of MT tipper response based on 3D fault models
LIN Xing-Long1(), GU Guan-Wen1,2,3(), NIU Xing-Guo4, WU Ye1,2,3, WANG Shun-Ji1, WANG Ying-Jie1, CAO Lai1
1. School of Earthquake Sciences,Institute of Disaster Prevention,Sanhe 065201,China 2. Hebei Key Laboratory of Earthquake Dynamics,Sanhe 065201,China 3. Langfang Key Laboratory of Earth Exploration and Information Technology,Sanhe 065201,China 4. Inner Mongolia Nonferrous Geology and Mining (Group) Geophysical Exploration Co.,Ltd.,Hohhot 010010,China
The tipper vector,a significant parameter in magnetotelluric(MT) sounding,is applicable to infer fault structures that cause lateral inhomogeneity of media.Subsurface faults typically exhibit three-dimensionality and complexity.To reveal the MT tipper response characteristics in 3D fault models,this study conducted numerical simulations of the MT tipper response in 3D fault models based on the vector finite element method.First,the validity of the 3D tipper forward modeling program was verified through theoretical model calculations and comparisons with previous finite element results.Subsequently,four typical 3D models for vertical,normal,reverse,and strike-slip faults were employed for forward modeling,obtaining the response characteristics of the real part,imaginary part,amplitude,and phase of the tipper.The simulation results are as follows:(1) In two polarization modes,the response characteristics of the real part,imaginary part,and amplitude of the tipper effectively reflect the properties,strikes,and dip directions of the four different faults while indicating the location of the laterally inhomogeneous boundaries,thus serving as a significant basis for discriminating fault types and characteristics;(2)In contrast,the relatively complex response characteristics of the phase fail to effectively mirror the fault characteristics.
林兴龙, 顾观文, 牛兴国, 武晔, 王顺吉, 王英杰, 曹来. 三维断层模型的MT倾子响应数值模拟[J]. 物探与化探, 2025, 49(1): 82-99.
LIN Xing-Long, GU Guan-Wen, NIU Xing-Guo, WU Ye, WANG Shun-Ji, WANG Ying-Jie, CAO Lai. Numerical simulation of MT tipper response based on 3D fault models. Geophysical and Geochemical Exploration, 2025, 49(1): 82-99.
Červ V, Pek J, Praus O. Long period magnetotelluric studies in the western part of the bohemian massif[J]. Seismology and Geology,2001,23(2):166-177.
[2]
Chen J, Dosso H W, Kang S. EM induction in elongated conductors normal to a coastline with application to geomagnetic measurements in Nigeria[J]. Journal of Geomagnetism and Geoelectricity, 1997, 49(11):1401-1414.
[3]
Garcia X, Ledo J, Queralt P. 2D inversion of 3D magnetotelluric data:The Kayabe dataset[J]. Earth,Planets and Space, 1999, 51(10):1135-1143.
Liu Y T, Peng L H, Sun D H, et al. Research on response characteristics of airborne magnetotelluric tipper based on three-dimensional finite element[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1329-1337.
[5]
Patra H P, Mallick K. Geosounding principles[M]. Amstedam Oxford New York: Elsevier Scientific Publishing Company,1980:253-259.
Li X M, Cao J X, He T E. Research on the change characteristics of MT response curves of fault structure[J]. Natural Gas Industry, 2004, 24(7):42-44,57-135.
Miao J C, Ruan S, Zhang Y. The application of the audio magnetotelluric sounding method to the precise interpretation of normal and reverse faults[J]. Geophysical and Geochemical Exploration, 2013, 37(4):681-686.
Feng J X, Yang T C, Wang Y L, et al. Magnetotelluric forward modelling for underground geologic structures by finite element method[J]. Progress in Geophysics, 2012, 27(1):137-144.
Liang X, Ai L, Wu R X. An analysis of MT forward modeling and different polarization modes in 3D fault model[J]. China’s Manganese Industry, 2016, 34(4):32-34.
Ouyang C X, Wang S P, Quan D H, et al. Application of the high frequency magnetotelluric sounding to faults[J]. World Earthquake Engineering, 2007, 23(3):138-141.
Xiao B, Yu C H, Xu J, et al. Prospecting of the deep tructure of city fault with magnetotelluric method sounding[J]. Urban Geotechnical Investigation & Surveying, 2011(3):159-163.
Wu Y, Feng S W, Wang Y Q. The technological application of TE and TM mode to the prospecting for structural fissure water[J]. Geophysical and Geochemical Exploration, 2011, 35(3):329-332.
Zhang Z Y, Wang X B, Fang H. A study of magnetotelluric sounding in the middle segment of the longmensham structural belt[J]. Geophysical and Geochemical Exploration, 2012, 36(3):377-381.
Xu Z M, Xin H C, Tan X P, et al. An analysis of the experimental result of MT remote reference technique in strong electromagnetic interference region[J]. Geophysical and Geochemical Exploration, 2018, 42(3):560-568.
Yu J H, Xia F H, Zhang Z Q, et al. Study on concealed fault structure in plain area based on magnetotelluric sounding:Taking Caigongzhuang Township and other four regional surveys in Tianjin as an example[J]. Mineral Exploration, 2023, 14(7):1161-1173.
Wu D, Yan J B, He W G. Study on distinguishing to anomalous bodies by tipper & influencing factor of tipper[J]. Progress in Geophysics, 2012, 27(6):2656-2663.
[19]
Parkinson W D. Directions of rapid geomagnetic fluctuations[J]. Geophysical Journal International, 1959, 2(1):1-14.
[20]
Schmucker U. Anomalies of geomagnetic variations in the southwestern United States[M]. Berkeley: University of California Press,1970.
[21]
Vozoff K. The magnetotelluric method in the exploration of sedimentary basins[J]. Geophysics, 1972, 37(1):98-141.
[22]
Zhdanov M S, Varentsov I M, Weaver J T, et al. Methods for modelling electromagnetic fields Results from COMMEMI—The international project on the comparison of modelling methods for electromagnetic induction[J]. Journal of Applied Geophysics, 1997, 37(3/4):133-271.
Hu W B, Su Z L, Chen Q L, et al. Character of tipper data and the application[J]. Oil Geophysical Prospecting, 1997, 32(2):202-213,304.
[24]
Ledo J, Gabàs A, Marcuello A. Static shift levelling using geomagnetic transfer functions[J]. Earth,Planets and Space, 2002, 54(5):493-498.
[25]
Berdichevsky M N, Dmitriev V I, Golubtsova N S, et al. Magnetovariational sounding:New possibilities[J]. Izvestiya,Physics of the Solid Earth, 2003, 39(9):701-727.
[26]
Pedersen L B, Bastani M, Dynesius L. Groundwater exploration using combined controlled-source and radiomagnetotelluric techniques[J]. Geophysics, 2005, 70(1):G8-G15.
Yu N, Wang X B, Kan A K, et al. Study on tipper and apparent tipper & application in fault interpretaion[J]. Chinese Journal of Engineering Geophysics, 2007, 4(4):275-281.
Liu J X, Gan J X, Tong X Z, et al. Finite element simulation and qualitative analysis of two-dimensional MT tipper response of tabular body[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2012, 34(5):541-547,500-501.
[31]
吴頔. 二维及三维倾子响应和异常体识别[D]. 长沙: 中南大学, 2012.
[31]
Wu D. 2D and 3D tilt response and distinguishing to anomalous bodies[D]. Changsha: Central South University, 2012.
Yu N, Hu X Y, Wang X B, et al. Two-dimensional magnetotelluric tipper and apparent tipper:Simulation and application[J]. Journal of Southwest Jiaotong University, 2014, 49(2):268-275.
Tian Y, Hu X Y, Yue B. The application of tipper to geophysical fault interpretation[J]. Geophysical and Geochemical Exploration, 2018, 42(6):1237-1244.
[34]
Wannamaker P E. Advances in three-dimensional magnetotelluric modeling using integral equations[J]. Geophysics, 1991, 56(11):1716.
[35]
Mackie R L, Madden T R, Wannamaker P E. Three-dimensional magnetotelluric modeling using difference equations—Theory and comparisons to integral equation solutions[J]. Geophysics, 1993, 58(2):215-226.
[36]
Mitsuhata Y, Uchida T. 3D magnetotelluric modeling using the T-Ω finite-element method[J]. Geophysics, 2004, 69(1):108-119.
Xu K J, Li T L, Zhang H, et al. Three dimentional magnetotelluric forward modeling using integral equation[J]. Northwestern Seismological Journal, 2006, 28(2):104-107.
[38]
谭捍东, 余钦范, John Booker, 等. 大地电磁法三维交错采样有限差分数值模拟[J]. 地球物理学报, 2003, 46(5):705-711.
[38]
Tan H D, Yu Q F, Booker J, et al. Magnetotelluric three-dimensional modeling using the staggered-grid finite difference method[J]. Chinese Journal of Geophysics, 2003, 46(5):705-711.
Gu G W, Wu W L, Li T L. Modeling for the effect of magnetotelluric 3D topography based on the vector finite-element method[J]. Journal of Jilin University:Earth Science Edition, 2014, 44(5):1678-1686.
Yin C C, Zhang B, Liu Y H, et al. A goal-oriented adaptive algorithm for 3D magnetotelluric forward modeling[J]. Chinese Journal of Geophysics, 2017, 60(1):327-336.
Tian Y, Yue B. Forward modeling of MT tipper based on 3D complex anomalous body model[J]. Geophysical and Geochemical Exploration, 2021, 45(4):1021-1029.
Yan J B, Hu T, Lin X, et al. Three-dimensional high-frequency electromagnetic tipper response and induction vectors based on the electric field vector finite element[J]. Geology and Exploration, 2020, 56(1):123-136.
Gu G W, Li T L. Three-dimensional magnetotelluric inversion with surface topography based on the vector finite element method[J]. Chinese Journal of Geophysics, 2020, 63(6):2449-2465.
[45]
Shi X, Utada H, Wang J, et al. Three-dimensional magnetotelluric forward modelling using vector finite element method combined with divergence corrections(VFE++)[R]// Hyderbad:17th IAGA WG1.2 Workshop on electromagnetic Induction in the Earth, 2004.
[46]
Mackie R L, Smith J T, Madden T R. Three-dimensional electromagnetic modeling using finite difference equations:The magnetotelluric example[J]. Radio Science, 1994, 29(4):923-935.
[47]
Siripunvaraporn W, Egbert G, Lenbury Y. Numerical accuracy of magnetotelluric modeling:A comparison of finite difference approximations[J]. Earth,Planets and Space, 2002, 54(6):721-725.
[48]
Nam M J, Kim H J, Song Y, et al. 3D magnetotelluric modelling including surface topography[J]. Geophysical Prospecting, 2007, 55(2):277-287.
[49]
徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社,1994.
[49]
Xu S Z. Finite element method in Geophysics[M]. Beijing: Sci-ence Press,1994.
Jin J M. Electromagnetic field finite element method[M]. Wang J G,tran. Xi'an: Xidian University Press,1998:176-189.
[51]
Newman G A, Alumbaugh D L. Three-dimensional magnetotelluric inversion using non-linear conjugate gradients[J]. Geophysical Journal International, 2000, 140(2):410-424.
Gu G W, Wu Y, Shi Y B. Research on fast three-dimensional forward algorithm of magnetotelluric sounding based on vector finite element[J]. Geophysical and Geochemical Exploration, 2020, 44(6):1387-1398.
[53]
Wannamaker P E, Stodt J A, Rijo L. PW2D finite element program for solution of magnetotelluric responses of two-dimensional earth resistivity structure.User documentation[J]. User Documentation,1985.