Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (1): 82-99    DOI: 10.11720/wtyht.2025.1116
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
三维断层模型的MT倾子响应数值模拟
林兴龙1(), 顾观文1,2,3(), 牛兴国4, 武晔1,2,3, 王顺吉1, 王英杰1, 曹来1
1.防灾科技学院 地球科学学院,河北 三河 065201
2.河北省地震动力学重点实验室,河北 三河 065201
3.廊坊市地球探测与信息技术重点实验室,河北 三河 065201
4.内蒙古有色地质矿业(集团)物探勘查有限责任公司,内蒙古 呼和浩特 010010
Numerical simulation of MT tipper response based on 3D fault models
LIN Xing-Long1(), GU Guan-Wen1,2,3(), NIU Xing-Guo4, WU Ye1,2,3, WANG Shun-Ji1, WANG Ying-Jie1, CAO Lai1
1. School of Earthquake Sciences,Institute of Disaster Prevention,Sanhe 065201,China
2. Hebei Key Laboratory of Earthquake Dynamics,Sanhe 065201,China
3. Langfang Key Laboratory of Earth Exploration and Information Technology,Sanhe 065201,China
4. Inner Mongolia Nonferrous Geology and Mining (Group) Geophysical Exploration Co.,Ltd.,Hohhot 010010,China
全文: PDF(13907 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

倾子矢量作为大地电磁测深法中的一个重要参数,适用于推断介质横向不均匀的断裂构造。地下断层构造一般具有三维性和复杂性的特点,为了揭示三维断层模型的大地电磁倾子响应特征,本文基于矢量有限元法开展了三维断层模型的大地电磁倾子响应数值模拟。首先,通过理论模型试算,并与前人的有限元法计算结果对比,验证了三维倾子正演计算程序的正确性。在此基础上,分别对直立断层、正断层、逆断层和走滑断层4种典型的三维断层模型进行正演模拟,获得倾子响应的实部、虚部、振幅和相位。模拟结果表明:在两种极化模式下,倾子实部、虚部和振幅响应特征对4种不同类型断层的性质、走向、倾向等信息反映效果明显,同时又表现了断层横向不均匀的边界位置,可作为判别断层类型和特征的重要依据;相比于倾子实部、虚部和振幅的响应特征,倾子相位响应特征较为复杂,难以有效反映断层特征信息。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林兴龙
顾观文
牛兴国
武晔
王顺吉
王英杰
曹来
关键词 大地电磁测深三维断层模型倾子矢量矢量有限元数值模拟    
Abstract

The tipper vector,a significant parameter in magnetotelluric(MT) sounding,is applicable to infer fault structures that cause lateral inhomogeneity of media.Subsurface faults typically exhibit three-dimensionality and complexity.To reveal the MT tipper response characteristics in 3D fault models,this study conducted numerical simulations of the MT tipper response in 3D fault models based on the vector finite element method.First,the validity of the 3D tipper forward modeling program was verified through theoretical model calculations and comparisons with previous finite element results.Subsequently,four typical 3D models for vertical,normal,reverse,and strike-slip faults were employed for forward modeling,obtaining the response characteristics of the real part,imaginary part,amplitude,and phase of the tipper.The simulation results are as follows:(1) In two polarization modes,the response characteristics of the real part,imaginary part,and amplitude of the tipper effectively reflect the properties,strikes,and dip directions of the four different faults while indicating the location of the laterally inhomogeneous boundaries,thus serving as a significant basis for discriminating fault types and characteristics;(2)In contrast,the relatively complex response characteristics of the phase fail to effectively mirror the fault characteristics.

Key wordsmagnetotelluric(MT) sounding    3D fault model    tipper vector    vector finite element    numerical simulation
收稿日期: 2024-03-29      修回日期: 2024-09-26      出版日期: 2025-02-20
ZTFLH:  P631.4  
基金资助:中央高校创新团队项目(ZY20215108);河北省高等学校科学技术研究项目(ZC2022056);中国长江三峡集团有限公司资助科研项目(0799217);廊坊市科技支撑计划项目(2023013184);河北省硕士在读研究生创新能力培养项目(CXZZSS2023184)
通讯作者: 顾观文(1975-),男,博士,教授,主要从事电磁勘探方法与理论、数值模拟及应用研究工作。Email:sun_ggw@163.com
作者简介: 林兴龙(1999-),男,硕士研究生,主要从事地震动力学与地球探测技术研究工作。Email:3040834260@qq.com
引用本文:   
林兴龙, 顾观文, 牛兴国, 武晔, 王顺吉, 王英杰, 曹来. 三维断层模型的MT倾子响应数值模拟[J]. 物探与化探, 2025, 49(1): 82-99.
LIN Xing-Long, GU Guan-Wen, NIU Xing-Guo, WU Ye, WANG Shun-Ji, WANG Ying-Jie, CAO Lai. Numerical simulation of MT tipper response based on 3D fault models. Geophysical and Geochemical Exploration, 2025, 49(1): 82-99.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1116      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I1/82
Fig.1  三维MT数值模拟区域剖面示意(据Shi等[45]修编)
Fig.2  矢量有限元法的区域剖分示意(据Nam等[48])
a—区域剖分示意;b—电场分量位置
Fig.3  中心低阻模型示意
Fig.4  二维棱柱体模型电场分量的二维有限元数值解和三维矢量有限元数值解的对比(1 Hz)
a—Ex分量的实部曲线;b—Ex分量的虚部曲线
Fig.5  二维棱柱体模型水平磁场分量的二维有限元数值解和三维矢量有限元数值解的对比(1 Hz)
a—Hy分量的实部曲线;b—Hy分量的虚部曲线
Fig.6  二维棱柱体模型垂直磁场分量的二维有限元数值解和三维矢量有限元数值解的对比(1 Hz)
a—Hz分量的实部曲线;b—Hz分量的虚部曲线
Fig.7  二维棱柱体模型电场分量的二维有限元数值解和三维矢量有限元数值解的对比(0.1 Hz)
a—Ex分量的实部曲线;bEx分量的虚部曲线
Fig.8  二维棱柱体模型水平磁场分量的二维有限元数值解和三维矢量有限元数值解的对比(0.1 Hz)
a—Hy分量的实部曲线;bHy分量的虚部曲线
Fig.9  二维棱柱体模型垂直磁场分量的二维有限元数值解和三维矢量有限元数值解的对比(0.1 Hz)
a—Hz分量的实部曲线;bHz分量的虚部曲线
Fig.10  二维棱柱体模型倾子响应实部的二维有限元数值解和三维矢量有限元数值解的对比
Fig.11  二维棱柱体模型倾子响应虚部的二维有限元数值解和三维矢量有限元数值解的对比
Fig.12  沿北偏东60°方向延伸的直立断层模型示意
a—x-y平面示意;b—垂直于断层走向的的剖面示意
Fig.13  沿北偏东60°方向延伸的直立断层倾子拟断面
a—Tzx倾子实部拟断面;b—Tzy倾子实部拟断面;c—Tzx倾子虚部拟断面;d—Tzy倾子虚部拟断面;e—Tzx倾子振幅拟断面;f—Tzy倾子振幅拟断面;g—Tzx倾子相位拟断面;h—Tzy倾子相位拟断面
Fig.14  频率为0.1 Hz时沿北偏东60°方向延伸的直立断层倾子平面等值线
a—Tzx倾子实部平面等值线;b—Tzy倾子实部平面等值线;c—Tzx倾子虚部平面等值线;d—Tzy倾子虚部平面等值线;e—Tzx倾子振幅平面等值线;f—Tzy倾子振幅平面等值线;g—Tzx倾子相位平面等值线;h—Tzy倾子相位平面等值线
Fig.15  沿北偏东60°方向延伸的正断层模型示意
a—x-y平面示意;b—垂直于断层走向的剖面示意
Fig.16  沿北偏东60°方向延伸的正断层倾子拟断面
a—Tzx倾子实部拟断面;b—Tzy倾子实部拟断面;c—Tzx倾子虚部拟断面;d—Tzy倾子虚部拟断面; e—Tzx倾子振幅拟断面;f—Tzy倾子振幅拟断面;g—Tzx倾子相位拟断面;h—Tzy倾子相位拟断面
Fig.17  频率为0.1 Hz时沿北偏东60°方向延伸的正断层倾子平面等值线
a—Tzx倾子实部平面等值线;b—Tzy倾子实部平面等值线;c—Tzx倾子虚部平面等值线;d—Tzy倾子虚部平面等值线;e—Tzx倾子振幅平面等值线;f—Tzy倾子振幅平面等值线;g—Tzx倾子相位平面等值线;h—Tzy倾子相位平面等值线
Fig.18  沿北偏东60°方向延伸的逆断层模型示意
a—x-y平面示意;b—垂直于断层走向的剖面示意
Fig.19  沿北偏东60°方向延伸的逆断层倾子拟断面
a—Tzx倾子实部拟断面;b—Tzy倾子实部拟断面;c—Tzx倾子虚部拟断面;d—Tzy倾子虚部拟断面;e—Tzx倾子振幅拟断面;f—Tzy倾子振幅拟断面;g—Tzx倾子相位拟断面;h—Tzy倾子相位拟断面
Fig.20  频率为0.1 Hz时沿北偏东60°方向延伸的逆断层倾子平面等值线
a—Tzx倾子实部平面等值线;b—Tzy倾子实部平面等值线;c—Tzx倾子虚部平面等值线;d—Tzy倾子虚部平面等值线;e—Tzx倾子振幅平面等值线;f—Tzy倾子振幅平面等值线;g—Tzx倾子相位平面等值线;h—Tzy倾子相位平面等值线
Fig.21  沿北偏东60°方向延伸的走滑断层模型示意
a—x-y平面示意;b—垂直于断层走向的剖面示意
Fig.22  沿北偏东60°方向延伸的走滑断层倾子拟断面
a—Tzx倾子实部拟断面;b—Tzy倾子实部拟断面;c—Tzx倾子虚部拟断面;d—Tzy倾子虚部拟断面;e—Tzx倾子振幅拟断面;f—Tzy倾子振幅拟断面;g—Tzx倾子相位拟断面;h—Tzy倾子相位拟断面
Fig.23  频率为0.1 Hz时沿北偏东60°方向延伸的走滑断层倾子平面等值线
a—Tzx倾子实部平面等值线;bTzy倾子实部平面等值线;cTzx倾子虚部平面等值线;dTzy倾子虚部平面等值线;eTzx倾子振幅平面等值线;fTzy倾子振幅平面等值线;gTzx倾子相位平面等值线;hTzy倾子相位平面等值线
[1] Červ V, Pek J, Praus O. Long period magnetotelluric studies in the western part of the bohemian massif[J]. Seismology and Geology,2001,23(2):166-177.
[2] Chen J, Dosso H W, Kang S. EM induction in elongated conductors normal to a coastline with application to geomagnetic measurements in Nigeria[J]. Journal of Geomagnetism and Geoelectricity, 1997, 49(11):1401-1414.
[3] Garcia X, Ledo J, Queralt P. 2D inversion of 3D magnetotelluric data:The Kayabe dataset[J]. Earth,Planets and Space, 1999, 51(10):1135-1143.
[4] 刘彦涛, 彭莉红, 孙栋华, 等. 基于三维有限元的航空大地电磁倾子响应特征[J]. 物探与化探, 2021, 45(5):1329-1337.
[4] Liu Y T, Peng L H, Sun D H, et al. Research on response characteristics of airborne magnetotelluric tipper based on three-dimensional finite element[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1329-1337.
[5] Patra H P, Mallick K. Geosounding principles[M]. Amstedam Oxford New York: Elsevier Scientific Publishing Company,1980:253-259.
[6] 朱仁学. 断层的大地电磁响应的研究[J]. 长春科技大学学报, 1999, 29(3):290-294.
[6] Zhu R X. Study of MT responses of fault[J]. Journal of Changchun University of Science and Technology, 1999, 29(3):290-294.
[7] 李学民, 曹俊兴, 贺桃娥. 断层构造的大地电磁响应曲线变化特征的研究[J]. 天然气工业, 2004, 24(7):42-44,57-135.
[7] Li X M, Cao J X, He T E. Research on the change characteristics of MT response curves of fault structure[J]. Natural Gas Industry, 2004, 24(7):42-44,57-135.
[8] 苗景春, 阮帅, 张悦. 音频大地电磁测深法对正、逆断层的精细解释[J]. 物探与化探, 2013, 37(4):681-686.
[8] Miao J C, Ruan S, Zhang Y. The application of the audio magnetotelluric sounding method to the precise interpretation of normal and reverse faults[J]. Geophysical and Geochemical Exploration, 2013, 37(4):681-686.
[9] 冯建新, 杨天春, 王燕龙, 等. 隐伏地质构造的大地电磁有限单元法正演模拟[J]. 地球物理学进展, 2012, 27(1):137-144.
[9] Feng J X, Yang T C, Wang Y L, et al. Magnetotelluric forward modelling for underground geologic structures by finite element method[J]. Progress in Geophysics, 2012, 27(1):137-144.
[10] 梁霄, 艾林, 吴仁学. 三维断层模型的MT正演响应及极化模式分析[J]. 中国锰业, 2016, 34(4):32-34.
[10] Liang X, Ai L, Wu R X. An analysis of MT forward modeling and different polarization modes in 3D fault model[J]. China’s Manganese Industry, 2016, 34(4):32-34.
[11] 欧阳承新, 王时平, 全德辉, 等. 高频大地电磁测深在断层构造探测中的应用研究[J]. 世界地震工程, 2007, 23(3):138-141.
[11] Ouyang C X, Wang S P, Quan D H, et al. Application of the high frequency magnetotelluric sounding to faults[J]. World Earthquake Engineering, 2007, 23(3):138-141.
[12] 肖兵, 余成华, 徐俊, 等. 城市断层深部结构大地电磁阵列探测[J]. 城市勘测, 2011(3):159-163.
[12] Xiao B, Yu C H, Xu J, et al. Prospecting of the deep tructure of city fault with magnetotelluric method sounding[J]. Urban Geotechnical Investigation & Surveying, 2011(3):159-163.
[13] 武毅, 封绍武, 王亚清. 应用大地电磁法TE、TM模式勘查构造裂隙水[J]. 物探与化探, 2011, 35(3):329-332.
[13] Wu Y, Feng S W, Wang Y Q. The technological application of TE and TM mode to the prospecting for structural fissure water[J]. Geophysical and Geochemical Exploration, 2011, 35(3):329-332.
[14] 张振宇, 王绪本, 方慧. 龙门山构造带中段大地电磁测深研究[J]. 物探与化探, 2012, 36(3):377-381.
[14] Zhang Z Y, Wang X B, Fang H. A study of magnetotelluric sounding in the middle segment of the longmensham structural belt[J]. Geophysical and Geochemical Exploration, 2012, 36(3):377-381.
[15] 徐志敏, 辛会翠, 谭新平, 等. 强电磁干扰区大地电磁远参考技术试验效果分析[J]. 物探与化探, 2018, 42(3):560-568.
[15] Xu Z M, Xin H C, Tan X P, et al. An analysis of the experimental result of MT remote reference technique in strong electromagnetic interference region[J]. Geophysical and Geochemical Exploration, 2018, 42(3):560-568.
[16] 刘战. 音频大地电磁法在探测断层发育区中的应用[J]. 工程地球物理学报, 2019, 16(5):730-736.
[16] Liu Z. Application of audio magnetotelluric method to detecting fault area[J]. Chinese Journal of Engineering Geophysics, 2019, 16(5):730-736.
[17] 于建华, 夏方华, 张志强, 等. 基于大地电磁测深的平原区隐伏断裂构造研究——以天津蔡公庄乡等四幅区调为例[J]. 矿产勘查, 2023, 14(7):1161-1173.
[17] Yu J H, Xia F H, Zhang Z Q, et al. Study on concealed fault structure in plain area based on magnetotelluric sounding:Taking Caigongzhuang Township and other four regional surveys in Tianjin as an example[J]. Mineral Exploration, 2023, 14(7):1161-1173.
[18] 吴頔, 严家斌, 贺文根. 倾子对异常体的分辨能力及影响因素研究[J]. 地球物理学进展, 2012, 27(6):2656-2663.
[18] Wu D, Yan J B, He W G. Study on distinguishing to anomalous bodies by tipper & influencing factor of tipper[J]. Progress in Geophysics, 2012, 27(6):2656-2663.
[19] Parkinson W D. Directions of rapid geomagnetic fluctuations[J]. Geophysical Journal International, 1959, 2(1):1-14.
[20] Schmucker U. Anomalies of geomagnetic variations in the southwestern United States[M]. Berkeley: University of California Press,1970.
[21] Vozoff K. The magnetotelluric method in the exploration of sedimentary basins[J]. Geophysics, 1972, 37(1):98-141.
[22] Zhdanov M S, Varentsov I M, Weaver J T, et al. Methods for modelling electromagnetic fields Results from COMMEMI—The international project on the comparison of modelling methods for electromagnetic induction[J]. Journal of Applied Geophysics, 1997, 37(3/4):133-271.
[23] 胡文宝, 苏朱刘, 陈清礼, 等. 倾子资料的特征及应用[J]. 石油地球物理勘探, 1997, 32(2):202-213,304.
[23] Hu W B, Su Z L, Chen Q L, et al. Character of tipper data and the application[J]. Oil Geophysical Prospecting, 1997, 32(2):202-213,304.
[24] Ledo J, Gabàs A, Marcuello A. Static shift levelling using geomagnetic transfer functions[J]. Earth,Planets and Space, 2002, 54(5):493-498.
[25] Berdichevsky M N, Dmitriev V I, Golubtsova N S, et al. Magnetovariational sounding:New possibilities[J]. Izvestiya,Physics of the Solid Earth, 2003, 39(9):701-727.
[26] Pedersen L B, Bastani M, Dynesius L. Groundwater exploration using combined controlled-source and radiomagnetotelluric techniques[J]. Geophysics, 2005, 70(1):G8-G15.
[27] 陈小斌, 赵国泽, 詹艳, 等. 磁倾子矢量的图示分析及其应用研究[J]. 地学前缘, 2004, 11(4):626-636.
[27] Chen X B, Zhao G Z, Zhan Y, et al. Analysis of tipper visual vectors and its application[J]. Earth Science Frontiers, 2004, 11(4):626-636.
[28] 余年, 王绪本, 阚瑷珂, 等. 倾子和视倾子的研究及在断裂解释中的应用[J]. 工程地球物理学报, 2007, 4(4):275-281.
[28] Yu N, Wang X B, Kan A K, et al. Study on tipper and apparent tipper & application in fault interpretaion[J]. Chinese Journal of Engineering Geophysics, 2007, 4(4):275-281.
[29] 陈清礼, 胡文宝, 李金铭, 等. 埋藏球体的倾子响应特征分析[J]. 石油天然气学报, 2007, 29(3):75-78,505.
[29] Chen Q L, Hu W B, Li J M, et al. Characteristics of tipper response of buried sphere[J]. Journal of Oil and Gas Technology, 2007, 29(3):75-78,505.
[30] 柳建新, 甘佳雄, 童孝忠, 等. 板状体MT倾子响应的二维有限元模拟与定性分析[J]. 物探化探计算技术, 2012, 34(5):541-547,500-501.
[30] Liu J X, Gan J X, Tong X Z, et al. Finite element simulation and qualitative analysis of two-dimensional MT tipper response of tabular body[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2012, 34(5):541-547,500-501.
[31] 吴頔. 二维及三维倾子响应和异常体识别[D]. 长沙: 中南大学, 2012.
[31] Wu D. 2D and 3D tilt response and distinguishing to anomalous bodies[D]. Changsha: Central South University, 2012.
[32] 余年, 胡祥云, 王绪本, 等. 大地电磁二维倾子和视倾子模拟及其应用研究[J]. 西南交通大学学报, 2014, 49(2):268-275.
[32] Yu N, Hu X Y, Wang X B, et al. Two-dimensional magnetotelluric tipper and apparent tipper:Simulation and application[J]. Journal of Southwest Jiaotong University, 2014, 49(2):268-275.
[33] 田郁, 胡祥云, 乐彪. 倾子在地球物理断裂构造解释中的应用[J]. 物探与化探, 2018, 42(6):1237-1244.
[33] Tian Y, Hu X Y, Yue B. The application of tipper to geophysical fault interpretation[J]. Geophysical and Geochemical Exploration, 2018, 42(6):1237-1244.
[34] Wannamaker P E. Advances in three-dimensional magnetotelluric modeling using integral equations[J]. Geophysics, 1991, 56(11):1716.
[35] Mackie R L, Madden T R, Wannamaker P E. Three-dimensional magnetotelluric modeling using difference equations—Theory and comparisons to integral equation solutions[J]. Geophysics, 1993, 58(2):215-226.
[36] Mitsuhata Y, Uchida T. 3D magnetotelluric modeling using the T-Ω finite-element method[J]. Geophysics, 2004, 69(1):108-119.
[37] 徐凯军, 李桐林, 张辉, 等. 利用积分方程法的大地电磁三维正演[J]. 西北地震学报, 2006, 28(2):104-107.
[37] Xu K J, Li T L, Zhang H, et al. Three dimentional magnetotelluric forward modeling using integral equation[J]. Northwestern Seismological Journal, 2006, 28(2):104-107.
[38] 谭捍东, 余钦范, John Booker, 等. 大地电磁法三维交错采样有限差分数值模拟[J]. 地球物理学报, 2003, 46(5):705-711.
[38] Tan H D, Yu Q F, Booker J, et al. Magnetotelluric three-dimensional modeling using the staggered-grid finite difference method[J]. Chinese Journal of Geophysics, 2003, 46(5):705-711.
[39] 顾观文, 吴文鹂, 李桐林. 大地电磁场三维地形影响的矢量有限元数值模拟[J]. 吉林大学学报:地球科学版, 2014, 44(5):1678-1686.
[39] Gu G W, Wu W L, Li T L. Modeling for the effect of magnetotelluric 3D topography based on the vector finite-element method[J]. Journal of Jilin University:Earth Science Edition, 2014, 44(5):1678-1686.
[40] 殷长春, 张博, 刘云鹤, 等. 面向目标自适应三维大地电磁正演模拟[J]. 地球物理学报, 2017, 60(1):327-336.
doi: 10.6038/cjg20170127
[40] Yin C C, Zhang B, Liu Y H, et al. A goal-oriented adaptive algorithm for 3D magnetotelluric forward modeling[J]. Chinese Journal of Geophysics, 2017, 60(1):327-336.
[41] 林昌洪, 谭捍东, 佟拓. 倾子资料三维共轭梯度反演研究[J]. 地球物理学报, 2011, 54(4):1106-1113.
[41] Lin C H, Tan H D, Tong T. Three-dimensional conjugate gradient inversion of tipper data[J]. Chinese Journal of Geophysics, 2011, 54(4):1106-1113.
[42] 田郁, 乐彪. 复杂异常体模型下的三维MT倾子正演模拟[J]. 物探与化探, 2021, 45(4):1021-1029.
[42] Tian Y, Yue B. Forward modeling of MT tipper based on 3D complex anomalous body model[J]. Geophysical and Geochemical Exploration, 2021, 45(4):1021-1029.
[43] 严家斌, 胡涛, 林旭, 等. 基于电场矢量有限元三维高频大地电磁倾子响应与感应矢量研究[J]. 地质与勘探, 2020, 56(1):123-136.
[43] Yan J B, Hu T, Lin X, et al. Three-dimensional high-frequency electromagnetic tipper response and induction vectors based on the electric field vector finite element[J]. Geology and Exploration, 2020, 56(1):123-136.
[44] 顾观文, 李桐林. 基于矢量有限元的带地形大地电磁三维反演研究[J]. 地球物理学报, 2020, 63(6):2449-2465.
doi: 10.6038/cjg2020N0321
[44] Gu G W, Li T L. Three-dimensional magnetotelluric inversion with surface topography based on the vector finite element method[J]. Chinese Journal of Geophysics, 2020, 63(6):2449-2465.
[45] Shi X, Utada H, Wang J, et al. Three-dimensional magnetotelluric forward modelling using vector finite element method combined with divergence corrections(VFE++)[R]// Hyderbad:17th IAGA WG1.2 Workshop on electromagnetic Induction in the Earth, 2004.
[46] Mackie R L, Smith J T, Madden T R. Three-dimensional electromagnetic modeling using finite difference equations:The magnetotelluric example[J]. Radio Science, 1994, 29(4):923-935.
[47] Siripunvaraporn W, Egbert G, Lenbury Y. Numerical accuracy of magnetotelluric modeling:A comparison of finite difference approximations[J]. Earth,Planets and Space, 2002, 54(6):721-725.
[48] Nam M J, Kim H J, Song Y, et al. 3D magnetotelluric modelling including surface topography[J]. Geophysical Prospecting, 2007, 55(2):277-287.
[49] 徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社,1994.
[49] Xu S Z. Finite element method in Geophysics[M]. Beijing: Sci-ence Press,1994.
[50] 金建铭. 电磁场有限元方法[M]. 王建国,译. 西安: 西安电子科技大学出版社,1998:176-189.
[50] Jin J M. Electromagnetic field finite element method[M]. Wang J G,tran. Xi'an: Xidian University Press,1998:176-189.
[51] Newman G A, Alumbaugh D L. Three-dimensional magnetotelluric inversion using non-linear conjugate gradients[J]. Geophysical Journal International, 2000, 140(2):410-424.
[52] 顾观文, 武晔, 石砚斌. 基于矢量有限元的大地电磁快速三维正演研究[J]. 物探与化探, 2020, 44(6):1387-1398.
[52] Gu G W, Wu Y, Shi Y B. Research on fast three-dimensional forward algorithm of magnetotelluric sounding based on vector finite element[J]. Geophysical and Geochemical Exploration, 2020, 44(6):1387-1398.
[53] Wannamaker P E, Stodt J A, Rijo L. PW2D finite element program for solution of magnetotelluric responses of two-dimensional earth resistivity structure.User documentation[J]. User Documentation,1985.
[1] 云龙, 陈苏, 傅磊, 庄海洋, 王驹. 高放废物北山地下实验室硐室群地震动反应特征研究[J]. 物探与化探, 2024, 48(6): 1519-1529.
[2] 杨浪邕航, 李红星. 浅地表环境下ESPAC微动成像方法影响因素分析[J]. 物探与化探, 2024, 48(5): 1322-1330.
[3] 常江浩, 薛俊杰, 孟庆鑫, 赵鹏. 煤矿富水体SOTEM响应三维数值模拟研究[J]. 物探与化探, 2024, 48(5): 1176-1184.
[4] 贾波, 张富明, 张利军, 刘皓皓, 郭亮亮, 宋伟, 张朝阳, 何海龙, 王刚. 巷道电性源瞬变电磁响应三维数值模拟[J]. 物探与化探, 2024, 48(5): 1185-1192.
[5] 刘童, 孙成禹, 蔡瑞乾. 地震面波和P—导波正演模拟与波场分析[J]. 物探与化探, 2024, 48(4): 986-995.
[6] 胡英才, 王瑞廷, 李貅. 激电效应对AMT正演的影响及其在砂岩型铀矿中的数值模拟[J]. 物探与化探, 2024, 48(4): 1006-1017.
[7] 刘洪华, 张卉, 王汝杰, 于鹏, 秦升强, 李文宇, 车荣祺. 滨海城市地质结构电阻率法三维模拟与应用[J]. 物探与化探, 2024, 48(4): 1037-1044.
[8] 王文杰, 陈磊, 雷聪聪, 石晓峰, 杨彪, 王文宝, 孙大鹏, 徐浩清. 内蒙古额济纳旗东北部雅干断裂带深部构造特征分析——来自大地电磁的证据[J]. 物探与化探, 2024, 48(3): 640-650.
[9] 夏时斌, 廖国忠, 邓国仕, 杨剑, 李富. 高密度电法和音频大地电磁测深法在西南岩溶地区地下水勘探中的应用[J]. 物探与化探, 2024, 48(3): 651-659.
[10] 何俊飞. 综合物探在新兴都斛铜矿床勘查中的应用[J]. 物探与化探, 2024, 48(2): 375-381.
[11] 杜惟一, 张冲, 韩华洋, 赵腾腾, 张文艺. 潜山花岗岩裂缝性储层阵列声波测井数值模拟研究[J]. 物探与化探, 2024, 48(2): 514-520.
[12] 郝社锋, 田少兵, 梅荣, 彭荣华, 李兆令. 高干扰矿集区大地电磁噪声抑制技术探索[J]. 物探与化探, 2024, 48(1): 162-174.
[13] 黄瑶. 基于三维电阻率法的水电工程隧道地质条件探查[J]. 物探与化探, 2024, 48(1): 281-286.
[14] 张雪昂, 杨志超, 李小燕, 董丽媛. 多孔隙度变化倾角裂缝型砂岩铀矿超热中子运移模拟[J]. 物探与化探, 2023, 47(6): 1547-1554.
[15] 杨天春, 胡峰铭, 于熙, 付国红, 李俊, 杨追. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4): 1010-1017.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com