Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (3): 640-650    DOI: 10.11720/wtyht.2024.1478
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
内蒙古额济纳旗东北部雅干断裂带深部构造特征分析——来自大地电磁的证据
王文杰1,2(), 陈磊1(), 雷聪聪1, 石晓峰1, 杨彪1, 王文宝1, 孙大鹏1, 徐浩清1
1.中国地质调查局 呼和浩特自然资源综合调查中心,内蒙古 呼和浩特 010200
2.中国地质科学院,北京 100083
Deep structural characteristics of the Yagan fault zone in northeastern Ejina Banner, Inner Mongolia: Evidence from magnetotelluric sounding
WANG Wen-Jie1,2(), CHEN Lei1(), LEI Cong-Cong1, SHI Xiao-Feng1, YANG Biao1, WANG Wen-Bao1, SUN Da-Peng1, XU Hao-Qing1
1. Hohhot General Survey of Natural Resources Center, China Geological Survey, Hohhot 010200, China
2. Chinese Academy of Geological Sciences, Beijing 100083, China
全文: PDF(14674 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

内蒙古额济纳旗东北部雅干断裂带的空间展布及深部构造特征一直存在争议。本文按照“由已知到未知”的研究思路,在研究区内完成5条大地电磁测深剖面,首先对研究区内西侧大地电磁剖面MT01的电性结构特征与剖面区段内所出露的雅干断裂带地质构造信息之间的关系进行了深入分析,确定了雅干断裂带的电性特征表现为“北倾+大倾角+大深度”的电阻率梯级带,并以此作为特征标志,结合区内东侧覆盖区内4条MT剖面(MT02~MT05)反演解释结果,识别出各剖面区段内雅干断裂带的深部位置及构造特征。同时,采用阻抗张量分解技术获得了各条MT剖面的电性主轴方向,结合二维反演解释结果确定了雅干断裂带空间走向。结果表明,研究区内雅干断裂带在浅地表处总体走向为近EW向(深部为NE45°),平均宽度约6.8 km,是一条由西向东且逐渐向北弧形偏转的逆断层,断层倾向总体向北,断层倾角60°~67°,断层深度约20 km。本文所获得的深部电性结构模型有效地揭示了研究区内深部构造特征,对于区域构造演化研究具有一定的参考意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王文杰
陈磊
雷聪聪
石晓峰
杨彪
王文宝
孙大鹏
徐浩清
关键词 额济纳旗雅干断裂带大地电磁测深电性结构特征    
Abstract

There exists a continued debate concerning the spatial distribution and deep structural characteristics of the Yagan fault zone in northeastern Ejina Banner, Inner Mongolia. Adhering to the known-to-unknown research approach, this study completed five magnetotelluric sounding (MT) profiles. First, it delved into the relationship between the electrical structure characteristics of a MT profile (MT01) on the west side of the study area and the geological structure information of the Yagan fault zone within the profile. In terms of electrical characteristics, the Yagan fault zone was determined as a resistivity gradient zone characterized by northward dip, high dip angles, and deep depths. Based on these characteristics, and combined with the inversion interpretation results of four MT profiles (MT02~MT05) on the east side, this study identified the deep positions and structural characteristics of the Yagan fault zone within all the MT profiles. Moreover, it determined the major electrical directions of all the MT profiles using the impedance tensor decomposition technique, and the spatial trend of the Yagan fault zone based on the two-dimensional inversion interpretation results. As revealed by the results, the Yagan fault zone within the study area exhibits an overall nearly EW strike at the shallow surface and a strike of NE45° in the deep part, with an average width of approximately 6.8 km. It is a reverse fault with a gradual arc deflection to the north from west to east, manifesting a generally northward dip direction, dip angles ranging from 60° to 67°, and a fault depth of about 20 km. The obtained deep electrical structure model effectively reveals the deep structural characteristics of the study area. providing certain reference significance for the study of regional tectonic evolution

Key wordsEjina Banner    Yagan fault zone    magnetotelluric sounding (MT)    electrical structure characteristics
收稿日期: 2023-11-10      修回日期: 2023-12-12      出版日期: 2024-06-20
ZTFLH:  P631  
基金资助:中国地质调查局项目“内蒙古自治区额济纳旗辉森乌拉等三幅1∶5万区域地质调查”(DD20230252)
通讯作者: 陈磊(1989-),男,内蒙古乌兰察布人,大学本科,主要从事矿产勘查、地质钻探和深部找矿研究工作。Email:chenlei@mail.cgs.gov.cn
作者简介: 王文杰(1992-),男,内蒙古丰镇人,硕士研究生,主要从事综合地球物理勘查与数据处理解释研究工作。Email:wangwenjie_cugb@163.com
引用本文:   
王文杰, 陈磊, 雷聪聪, 石晓峰, 杨彪, 王文宝, 孙大鹏, 徐浩清. 内蒙古额济纳旗东北部雅干断裂带深部构造特征分析——来自大地电磁的证据[J]. 物探与化探, 2024, 48(3): 640-650.
WANG Wen-Jie, CHEN Lei, LEI Cong-Cong, SHI Xiao-Feng, YANG Biao, WANG Wen-Bao, SUN Da-Peng, XU Hao-Qing. Deep structural characteristics of the Yagan fault zone in northeastern Ejina Banner, Inner Mongolia: Evidence from magnetotelluric sounding. Geophysical and Geochemical Exploration, 2024, 48(3): 640-650.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1478      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I3/640
Fig.1  研究区大地构造位置及地质与构造简图
a—研究区大地构造位置;b—研究区地质与构造简图
岩性 时代 地层 代号 样品数/块 电阻率/(Ω·m)
最小值 最大值 平均值
砂岩 白垩纪 巴音戈壁组 K1by 15 813 4145 1758
花岗岩 晚三叠世 侵入岩 ηγT3 15 200 3106 1340
流纹岩 二叠纪 雅干火山岩 P1yg 15 555 2180 1042
玄武岩 二叠纪 金塔组 P2j 12 632 1215 1009
砂质板岩 二叠纪 双堡塘组 P2sb 15 5241 8233 6658
闪长岩 二叠纪 侵入岩 δP1 12 340 2590 552
花岗岩 二叠纪 侵入岩 δγP1 15 1336 4560 2379
辉长岩 二叠纪 侵入岩 νP1 15 620 2370 1363
石英砂岩 石炭纪 绿条山组 C1l 15 345 3222 1711
大理岩 石炭纪 绿条山组 C1l 11 254 976 558
英安岩 石炭纪 白山组 C1-2b 14 1104 1513 1218
花岗岩 石炭纪 侵入岩 C1l 16 260 2258 1266
闪长岩 石炭纪 侵入岩 δοC2 15 627 2413 1113
花岗闪长岩 晚泥盆世 侵入岩 γδD3 14 635 1540 892
结晶灰岩 泥盆纪 西屏山组 D3x 13 70 1874 695
花岗岩 新元古代 侵入岩 ηγPt3 15 1028 1583 1591
Table 1  研究区内岩石电性测定结果统计结果
Fig.2  研究区各类岩石电阻率特征
a—区域地层岩石电阻率特征;b—区域岩浆岩电阻率特征
Fig.3  大地电磁测深剖面位置
Fig.4  典型测点大地电磁观测曲线
a—研究区西北侧岩浆岩体大地电磁观测曲线;b—研究区中部盆地大地电磁观测曲线
Fig.5  MT01~MT05剖面相位张量二维偏离度
Fig.6  研究区大地电磁测深剖面构造主轴分析结果
Fig.7  雅干断裂野外照片(a1)、(a2)及MT01剖面大地电磁测深二维反演结果(b)
Fig.8  MT02~MT05剖面大地电磁测深二维反演与解释结果
剖面 边缘位置
(MT测站号)
宽度/km 中心断裂位置
(MT测站号)
倾向/(°) 倾角/(°) 断层类型 最佳电性主轴方
向(10-1~10-2 Hz)
MT01 3~9 6 6 50° 55°~65° 逆断层 47.5°
MT02 4~10 6 6 62°~65° 逆断层 47.5°
MT03 3~9 6 6 60°~68° 逆断层 45°
MT04 8~16 8 11 316° 65°~70° 逆断层 75°
MT05 13~20 7 18 300° 62°~68° 逆断层 35°
均值 - 6.8 - 350° 60°~67° - -
Table 2  推断雅干断裂带构造特征
Fig.9  推测雅干断裂带二维电性结构特征及浅地表空间走向
a—雅干断裂带电性结构(三维展示);b—浅地表推测雅干断裂带空间走向位置
[1] 王文杰, 雷聪聪, 薄海军, 等. 组合物探方法在浅覆盖区1∶50 000区域地质调查中的应用——以额济纳旗地区为例[J]. 物探化探计算技术, 2022, 44(2):235-244.
[1] Wang W J, Lei C C, Bo H J, et al. Application of composite geophysical exploration method in 1∶50,000 regional geological survey in shallow coverage area-taking Ejina banner area as an example[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2022, 44(2):235-244.
[2] 郑荣国, 吴泰然, 张文, 等. 阿拉善地块北缘雅干花岗岩体地球化学、地质年代学及其对区域构造演化制约[J]. 岩石学报, 2013, 29(8):2665-2675.
[2] Zheng R G, Wu T R, Zhang W, et al. Geochronology and geochemistry of the Yagan granite in the northern margin of the Alxa Block:Constraints on the tectonic evolution of the southern Altaids[J]. Acta Petrologica Sinica, 2013, 29(8):2665-2675.
[3] 吴泰然, 何国琦. 内蒙古阿拉善地块北缘的构造单元划分及各单元的基本特征[J]. 地质学报, 1993, 67(2):97-108.
[3] Wu T R, He G Q. Tectonic units and their fundamental characteristics on the northern margin of the Alxa Block[J]. Acta Geological Sinica, 1993, 67(2):97-108.
[4] 王青玉. 雅干幅K-48-13 拐子湖幅K-48-19 1∶20万区域地质调查报告[R]. 甘肃地质局地质力学区测队,1981.
[4] Wang Qing Yu. Yakan Area K-48-13 Guaizi Lake area K-48-19 1∶200,000 regional Geological survey report[R]. Geomechanical area Survey Team,Gansu Geological Bureau,1981.
[5] Badarch G, Dickson Cunningham W, Windley B F. A new terrane subdivision for Mongolia:Implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21(1):87-110.
[6] 潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1):1-16,255,17-28.
[6] Pan G T, Xiao Q H, Lu S N, et al. Subdivision of tectonic units in China[J]. Geology in China, 2009, 36(1):1-16,255,17-28.
[7] 魏文博. 我国大地电磁测深新进展及瞻望[J]. 地球物理学进展, 2002, 17(2):245-254.
[7] Wei W B. New advance and prospect of magnetotelluric sounding (MT) in China[J]. Progress in Geophysics, 2002, 17(2):245-254.
[8] 杨文采, 金胜, 张罗磊, 等. 青藏高原岩石圈三维电性结构[J]. 地球物理学报, 2020, 63(3):817-827.
doi: 10.6038/cjg2020N0197
[8] Yang W C, Jin S, Zhang L L, et al. The three-dimensional resistivity structures of the lithosphere beneath the Qinghai-Tibet Plateau[J]. Chinese Journal of Geophysics, 2020, 63(3):817-827.
[9] 李波, 金胜, 叶高峰, 等. 中亚造山带东段岩石圈电性结构特征及其构造涵义[J]. 现代地质, 2023, 37(1):15-30.
[9] Li B, Jin S, Ye G F, et al. Lithospheric electrical structure of eastern segment of Central Asian Orogenic Belt and its tectonic implications[J]. Geoscience, 2023, 37(1):15-30.
[10] 侯征, 陈雄, 于长春, 等. 山东齐河—禹城地区深部地质构造特征——来自大地电磁的证据[J]. 地球物理学进展, 2021, 36(3):1070-1081.
[10] Hou Z, Chen X, Yu C C, et al. Characteristics of the geological deep structure in QiHe-Yucheng Area of Shandong:Evidence from magnetotelluric method[J]. Progress in Geophysics, 2021, 36(3):1070-1081.
[11] Maswah F, Suryantini, Srigutomo W, et al. Magnetotelluric data analysis using phase tensor and tipper strike to determine geoelectrical strike in "DKH" geothermal field[J]. IOP Conference Series:Earth and Environmental Science, 2021, 732(1):012014.
[12] 李尔頔, 罗润林, 徐志峰. 大地电磁测深不同极化模式测深曲线特征在探测断裂中的应用[J]. 矿产与地质, 2017, 31(1):124-130.
[12] Li E D, Luo R L, Xu Z F. Application of curve features under different polarization modes of magnetotelluric sounding in the detection of faults[J]. Mineral Resources and Geology, 2017, 31(1):124-130.
[13] 许第桥, 李茂. 二连盆地宽频大地电磁法数据精细反演处理研究——以满都拉图地区的数据为例[J]. 物探与化探, 2023, 47(4):994-1001.
[13] Xu D Q, Li M. Fine inversion of the broadband magnetotelluric data of the Erlian Basin:A case study of the Mandulatu Area[J]. Geophysical and Geochemical Exploration, 2023, 47(4):994-1001.
[14] 张昭, 殷全增, 张龙飞, 等. 综合物探技术在深部碳酸盐岩热储探测中的应用研究——以雄安新区为例[J]. 物探与化探, 2023, 47(4):926-935.
[14] Zhang Z, Yin Q Z, Zhang L F, et al. Application of the integrated geophysical exploration technology in the exploration of deep carbonate geothermal reservoirs:A case study of the Xiongan New Area[J]. Geophysical and Geochemical Exploration, 2023, 47(4):926-935.
[15] 吴旭亮, 李茂. 基于AMT的龙首山成矿带西岔地段马路沟断裂带深部发育特征[J]. 物探与化探, 2022, 46(5):1180-1186.
[15] Wu X L, Li M. Deep occurrence characteristics of the Malugou fault zone in the Xicha section of the Longshoushan metallogenic belt determined based on AMT[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1180-1186.
[16] 李英宾. 可控源音频大地电磁测量对腾格尔坳陷东北缘下白垩统赛汉组砂体的识别及其地质意义[J]. 物探与化探, 2021, 45(3):616-623.
[16] Li Y B. The identification of the sand body of lower Cretaceous Saihan Formation on the northeastern margin of Tengger depression by controlled source audio frequency magnetotelluric survey[J]. Geophysical and Geochemical Exploration, 2021, 45(3):616-623.
[17] 陈大磊, 王润生, 贺春艳, 等. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1):70-77.
[17] Chen D L, Wang R S, He C Y, et al. Application of integrated geophysical exploration in deep spatial structures:A case study of Jiaodong gold ore concentration area[J]. Geophysical and Geochemical Exploration, 2022, 46(1):70-77.
[18] 彭明涛, 王磊, 曾明勇, 等. 综合物探方法在川东高陡断褶带隐伏断层勘探中的应用研究[J]. 物探与化探, 2021, 45(4):882-889.
[18] Peng M T, Wang L, Zeng M Y, et al. The application of integrated geophysical prospecting to the exploration of buried faults in the high and steep fault-fold zone in eastern Sichuan[J]. Geophysical and Geochemical Exploration, 2021, 45(4):882-889.
[19] 仇根根, 方慧, 吕琴音, 等. 武夷山北段及相邻区深部电性构造与成矿分析:基于三维大地电磁探测结果[J]. 中国地质, 2019, 46(4):775-785.
[19] Qiu G G, Fang H, Lyu Q Y, et al. Deep electrical structures and metallogenic analysis in the north section of Wuyishan Mountains and its adjacent areas:Based on three-dimensional magnetotelluric sounding results[J]. Geology in China, 2019, 46(4):775-785.
[20] 虎新军, 陈晓晶, 仵阳, 等. 综合地球物理技术在银川盆地东缘地热研究中的应用[J]. 物探与化探, 2022, 46(4):845-853.
[20] Hu X J, Chen X J, Wu Y, et al. Application of comprehensive geophysical exploration in geothermal resources on the eastern margin of Yinchuan Basin[J]. Geophysical and Geochemical Exploration, 2022, 46(4):845-853.
[21] 伍显红, 许第桥, 李茂. 宽频大地电磁法在二连盆地铀矿资源评价中的试验应用[J]. 物探与化探, 2022, 46(4):830-837.
[21] Wu X H, Xu D Q, Li M. An application test of broadband magnetotelluric method(BMT)for the evaluation of uranium resources in the Erlian Basin[J]. Geophysical and Geochemical Exploration, 2022, 46(4):830-837.
[1] 夏时斌, 廖国忠, 邓国仕, 杨剑, 李富. 高密度电法和音频大地电磁测深法在西南岩溶地区地下水勘探中的应用[J]. 物探与化探, 2024, 48(3): 651-659.
[2] 何俊飞. 综合物探在新兴都斛铜矿床勘查中的应用[J]. 物探与化探, 2024, 48(2): 375-381.
[3] 郝社锋, 田少兵, 梅荣, 彭荣华, 李兆令. 高干扰矿集区大地电磁噪声抑制技术探索[J]. 物探与化探, 2024, 48(1): 162-174.
[4] 张阳阳, 杜威, 王芝水, 缪旭煌, 张翔. 基于Lévay飞行的粒子群算法在大地电磁反演中的应用[J]. 物探与化探, 2023, 47(4): 986-993.
[5] 杨天春, 胡峰铭, 于熙, 付国红, 李俊, 杨追. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4): 1010-1017.
[6] 蒋首进, 陈永凌, 李怀远, 胡俊峰. 藏东南冻错曲塘布段冰碛物电阻率特征[J]. 物探与化探, 2023, 47(1): 73-80.
[7] 孙海川. 兰州新区西部恐龙园区块地热地质条件分析[J]. 物探与化探, 2022, 46(6): 1411-1418.
[8] 赵理芳, 李爱勇, 王导丽, 张明鹏, 周锡明. 基于电阻率测井曲线的大地电磁测深标定[J]. 物探与化探, 2022, 46(3): 737-742.
[9] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[10] 田郁, 乐彪. 复杂异常体模型下的三维MT倾子正演模拟[J]. 物探与化探, 2021, 45(4): 1021-1029.
[11] 王佳龙, 邸兵叶, 张宝松, 赵东东. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3): 576-582.
[12] 刘成功, 景建恩, 金胜, 魏文博. 广西大厂矿田深部成矿预测及成矿机制研究[J]. 物探与化探, 2021, 45(2): 337-345.
[13] 刘俊峰, 程云涛, 邓志强, 周芳春, 曹创华, 刘翔, 曾美强, 李杰, 黄志彪, 陈虎. CSAMT与AMT数据“拼接”处理——以湖南仁里铌钽矿床7号剖面为例[J]. 物探与化探, 2021, 45(1): 68-75.
[14] 屈利军, 王庆, 李波, 姚伟. 综合物探方法在湖南香花岭矿田三合圩矿区深部成矿规律研究中的应用[J]. 物探与化探, 2020, 44(6): 1313-1321.
[15] 张伟, 胡蕾, 张钊搏. LEMI-417型地球深部电磁场观测系统的数据格式解析[J]. 物探与化探, 2020, 44(4): 810-815.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com