Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (4): 1006-1017    DOI: 10.11720/wtyht.2024.1218
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
激电效应对AMT正演的影响及其在砂岩型铀矿中的数值模拟
胡英才1,2,3(), 王瑞廷1,2, 李貅2
1.西北有色地质矿业集团有限公司,陕西 西安 710054
2.长安大学 地质工程与测绘学院,陕西 西安 710061
3.核工业北京地质研究院 中核集团铀资源勘查与评价技术重点实验室,北京 100029
Influence of induced polarization effects on AMT forward modeling and its numerical simulations for sandstone uranium deposits
HU Ying-Cai1,2,3(), WANG Rui-Ting1,2, LI Xiu2
1. Northwest Nonferrous Geological and Mining Group Co., Ltd., Xi’an 710054, China
2. School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710061, China
3. Key Laboratory of Uranium Resource Exploration and Evaluation Technology, China National Nuclear Corporation, Beijing Research Institute of Uranium Geology, Beijing 100029, China
全文: PDF(8319 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

音频大地电磁测深法应用比较广泛,已成为固体矿产深部地球物理探测的主要方法之一,但在处理解释中,往往只考虑电磁效应,忽略了激电效应,这与实际地质情况不相符。本文在实现带激电效应的二维音频大地电磁有限元正演基础上,模拟了激电效应各参数对二维正演响应的影响大小及规律,同时对二连盆地砂岩型铀矿的地电模型进行了数值模拟研究。结果表明:①基于Cole-Cole模型实现的带激电效应二维AMT正演,随着极化率、频率相关系数及时间常数取值的增加,主要降低二维正演视电阻率异常响应值,增大阻抗相位异常响应值,这对探测低阻目标体有利,探测高阻目标体影响较大;②激电效应中的零频电阻率和极化率对二维正演响应影响较大,频率相关系数与时间常数对正演的影响大小主要取决于极化率,当极化率较大时,二者对正演响应同样具有较大的影响;③在砂岩型铀矿中,当砂体中存在浸染状及含硫化物的岩性时,较大的激电效应会对频域电磁测深法探测目标砂体产生较大影响,因此在探测前需进行正演建模,了解激电效应的影响大小。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡英才
王瑞廷
李貅
关键词 音频大地电磁测深法激电效应二维正演砂岩型铀矿    
Abstract

The extensively applied audio magnetotellurics (AMT) has become a primary method for deep geophysical exploration of solid mineral resources. However, its data processing and interpretation often only consider electromagnetic effects but ignore induced polarization (IP) effects, which is inconsistent with actual geological conditions. Based on the two-dimensional AMT finite-element forward modeling with IP effects, this study simulated the magnitude and regularity of the influence of various parameters of IP effects on the two-dimensional forward response. Moreover, this study conducted a numerical simulation on the geoelectric model of sandstone uranium deposits in the Erlian Basin. The results show that: (1) With an increase in the values of polarizability, frequency correlation coefficient, and time constant, the two-dimensional AMT forward modeling with IP effects based on the Cole-Cole model primarily reduced the abnormal response value of two-dimensional forward modeling apparent resistivity and increased the abnormal response value of impedance phase. This is beneficial for detecting low-resistivity targets rather than high-resistivity targets; (2) The zero-frequency resistivity and polarizability in IP effects exhibit a significant influence on the two-dimensional forward response. The influence of both frequency correlation coefficient and time constant on the forward response primarily depends on the polarizability. High polarizability suggests their significant influence on the forward response; (3) In the case of disseminated and sulfide-bearing lithologies in the sand bodies of sandstone uranium deposits, greater IP effects will significantly influence the detection of target sand bodies using frequency-domain AMT. Therefore, forward modeling is necessary before detection to determine the magnitude of IP effects.

Key wordsaudio magnetotellurics    induced polarization effect    two-dimensional forward modeling    sandstone uranium deposit
收稿日期: 2023-05-22      修回日期: 2023-12-19      出版日期: 2024-08-20
ZTFLH:  P631  
基金资助:西北有色地质矿业集团博士后科研工作站项目(XBDKKJ202111);国家自然科学基金项目(41604126)
作者简介: 胡英才(1985-),男,高级工程师,博士,主要从事地球物理正反演及应用研究工作。Email:hycjlu@163.com
引用本文:   
胡英才, 王瑞廷, 李貅. 激电效应对AMT正演的影响及其在砂岩型铀矿中的数值模拟[J]. 物探与化探, 2024, 48(4): 1006-1017.
HU Ying-Cai, WANG Rui-Ting, LI Xiu. Influence of induced polarization effects on AMT forward modeling and its numerical simulations for sandstone uranium deposits. Geophysical and Geochemical Exploration, 2024, 48(4): 1006-1017.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1218      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I4/1006
Fig.1  二维音频大地电磁正演模型示意
Fig.2  Cole-Cole模型等效电路
层序号 层厚度/m 零频电阻率/(Ω·m) 极化率/% 频率相关系数 时间常数/s
1 200.0 100.0 0 0 0
2 200.0 10.0 0.4 0.5 100.0
3 1000.0 0 0 0
Table 1  层状模型参数
频率/Hz 1D视电阻率
解析解/(Ω·m)
2D视电阻率数
值计算结果/(Ω·m)
视电阻
率误差/%
1D阻抗相位
解析解/(°)
2D阻抗相位
数值计算结果/(°)
阻抗相位
误差/%
10400 100.018 100.169 0.151 45.020 45.048 0.062
5200 99.332 99.410 0.079 44.882 44.912 0.067
2600 102.617 102.640 0.022 44.046 44.057 0.025
1300 114.220 114.280 0.053 46.079 46.077 0.004
640 114.751 114.838 0.076 53.415 53.418 0.006
320 91.935 91.989 0.059 61.437 61.446 0.015
159 63.163 63.188 0.040 66.878 66.888 0.015
79 39.078 39.084 0.015 68.978 68.988 0.014
40 23.550 23.550 0 65.185 65.191 0.009
18.8 15.850 15.849 0.006 52.652 52.654 0.004
9.4 15.825 15.825 0 37.224 37.224 0
4.7 22.162 22.163 0.005 24.973 24.972 0.004
2.34 36.640 36.643 0.008 18.387 18.387 0
1.17 62.650 62.654 0.006 16.292 16.293 0.006
0.59 104.479 104.484 0.005 17.018 17.019 0.006
0.293 168.476 168.478 0.001 19.539 19.539 0
0.146 255.138 255.141 0.001 23.081 23.081 0
Table 2  层状介质模型一维与二维正演计算结果对比
名称 埋深/m 电阻率/(Ω·m) 极化率/% 频率相关系数 时间常数/s
背景参数 - 500.0 0 0 0
异常体 100 200.0&1250.0 无极化/0.2/0.5/0.8 0.2 10
Table 3  不同极化率下的二维正演模型参数
Fig.3  不同极化率的TM模式正演响应结果
Fig.4  不同极化率的TE模式正演响应结果
名称 埋深/m 电阻率/(Ω·m) 极化率/% 频率相关系数 时间常数/s
背景参数 - 500.0 0 0 0
异常体 100 200.0&1250.0 0.1/0.5 0.1/0.2/0.4/0.6 10
Table 4  不同频率相关系数下的二维正演模型参数
Fig.5  低极化率条件下不同频率相关系数的二维TM模式正演响应结果
Fig.6  低极化率条件下不同频率相关系数的二维TE模式正演响应结果
Fig.7  高极化率条件下不同频率相关系数的二维TM模式正演响应结果
Fig.8  高极化率条件下不同频率相关系数的二维TE模式正演响应结果
名称 埋深/m 电阻率/(Ω·m) 极化率/% 频率相关系数 时间常数/s
背景参数 - 500.0 0 0 0
异常体 100 200.0&1250.0 0.1/0.5 0.1 0.05/5/500/5000
Table 5  不同时间常数的二维正演模型参数
Fig.9  低极化率条件下不同时间常数的二维TM模式正演响应结果
Fig.10  低极化率条件下不同时间常数的二维TE模式正演响应结果
Fig.11  高极化率条件下不同时间常数的二维TM模式正演响应结果
Fig.12  高极化率条件下不同时间常数的二维TE模式正演响应结果
Fig.13  砂岩型铀矿地电模型示意
Fig.14  砂岩型铀矿地电模型AMT二维TM模式视电阻率结果
Fig.15  砂岩型铀矿地电模型AMT二维TM模式阻抗相位结果
Fig.16  高时间常数和高频率相关系数下AMT二维TM模式正演响应结果
Fig.17  不同激电参数下砂岩型铀矿AMT二维反演结果图
[1] 汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.
[1] Tang J T, He J S. Controlled source audio magnetotelluric method and its application[M]. Changsha: Central South University Press, 2005.
[2] 吴娟. 复杂地电结构AMT有限元数值模拟[D]. 长沙: 中南大学, 2011.
[2] Wu J. Complex geoelectrical structure responses in AMT using finite element method[D]. Changsha: Central South University, 2011.
[3] 汤井田, 张林成, 王显莹, 等. 庐枞矿集区矾山—将军庙地区AMT三维反演及地质结构解释[J]. 地球物理学报, 2018, 61(4):1576-1587.
doi: 10.6038/cjg2018L0121
[3] Tang J T, Zhang L C, Wang X Y, et al. Subsurface electrical structure of the Fanshan-JiangjunmiaoRegion in the Lujiang-Zongyang Ore District derived from 3D inversion of audio-magnetotelluric data[J]. Chinese Journal of Geophysics, 2018, 61(4):1576-1587.
[4] 王佳龙, 邸兵叶, 张宝松, 等. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3):576-582.
[4] Wang J L, Di B Y, Zhang B S, et al. The application of audio frequency magnetotelluric method to the geothermal exploration:A case study of HuangniqiaoArea,Ninghua County,Fujian Province[J]. Geophysical and Geochemical Exploration, 2021, 45(3):576-582.
[5] 武毅, 郭建强. 塔克拉玛干沙漠水文地质特征的音频大地电磁测深法勘查效果[J]. 工程地球物理学报, 2004, 1(3):269-273.
[5] Wu Y, Guo J Q. The effect of audiomagnetotelluric sounding prospecting for detecting hydrogeological characteristic in takelamgan desert[J]. Chinese Journal of Engineering Geophysics, 2004, 1(3):269-273.
[6] 张炯, 陈小斌, 尹小康, 等. 色拉哈断裂及邻区音频大地电磁三维阵列探测[J]. 地球科学, 2022, 47(3):856-866.
[6] Zhang J, Chen X B, Yin X K, et al. 3D AMT array exploration in the selaha fault and adjacent area[J]. Earth Science, 2022, 47(3):856-866.
[7] Jiang W P, Brodie R C, Duan J M, et al. Probabilistic inversion of audio-frequency magnetotelluric data and application to cover thickness estimation for mineral exploration in Australia[J]. Journal of Applied Geophysics, 2023, 208:104869.
[8] Xu Z M, Li G, Xin H C, et al. Hydrogeological prospecting in the Da Qaidam Area of the Qaidam Basin using the audio-frequency magnetotelluric method[J]. Journal of Applied Geophysics, 2020, 182:104179.
[9] Maryadi M, Mizunaga H. Subsurface temperature estimation in a geothermal field based on audio-frequency magnetotelluric data[J]. Exploration Geophysics, 2022, 53(3):275-288.
[10] 万伟, 唐新功, 黄清华. 陆地可控源电磁法三维勘探的激电效应影响研究[J]. 地球物理学进展, 2019, 34(6):2328-2335.
[10] Wan W, Tang X G, Huang Q H. Influence of induced polarization effects on 3D land CSEM sounding[J]. Progress in Geophysics, 2019, 34(6):2328-2335.
[11] Pelton W H, Ward S H, Hallof P G, et al. Mineral discrimination and removal of inductive coupling with multifrequency IP[J]. Geophysics, 2012, 43(3):588-609.
[12] Ware G H. Theoretical and field investigations of telluric currents and induced polarization[M]. Berkeley: University of California at Berkeley, 1974.
[13] 汤井田, 黄磊, 余灿林, 等. CSAMT法中极化层的视电阻率响应[J]. 工程地球物理学报, 2008, 5(6):648-651.
[13] Tang J T, Huang L, Yu C L, et al. There sponsibility of apparent resistivity curves on CSAMT for polarized layer[J]. Chinese Journal of Engineering Geophysics, 2008, 5(6):648-651.
[14] 岳安平, 底青云, 王妙月, 等. 含激电效应的CSAMT一维正演研究[J]. 地球物理学报, 2009, 52(7):1937-1946.
[14] Yue A P, Di Q Y, Wang M Y, et al. 1D forward modeling of the CSAMT signal incorporating IP effect[J]. Chinese Journal of Geophysics, 2009, 52(7):1937-1946.
[15] 符超, 李薇薇, 李志远, 等. 基于Cole-Cole模型的中间极化水平层大地电磁IP效应研究[J]. 地球物理学进展, 2016, 31(2):501-507.
[15] Fu C, Li W W, Li Z Y, et al. Inducedpolarization effect of magnetotelluric with polarized horizontal layers based on the Cole-Cole model[J]. Progress in Geophysics, 2016, 31(2):501-507.
[16] 李勇, 林品荣, 肖原, 等. 电偶源频率电磁测深激发极化效应研究[J]. 地球物理学报, 2011, 54(7):1935-1944.
[16] Li Y, Lin P R, Xiao Y, et al. Induced Polarization effect on frequency-domain electromagnetic sounding with electric dipole source[J]. Chinese Journal of Geophysics, 2011, 54(7):1935-1944.
[17] 朱占升, 谭捍东. 考虑激电效应的二维大地电磁正演[J]. 工程地球物理学报, 2011, 8(4):433-437.
[17] Zhu Z S, Tan H D. 2D forward modeling of the MT signal incorporating IP effect[J]. Chinese Journal of Engineering Geophysics, 2011, 8(4):433-437.
[18] 王恒, 李桐林, 陈汉波, 等. 考虑激电效应的二维大地电磁测深正演[J]. 世界地质, 2018, 37(4):1226-1230.
[18] Wang H, Li T L, Chen H B, et al. 2D magnetotelluric forward modeling withinducedpolarization[J]. Global Geology, 2018, 37(4):1226-1230.
[19] 徐凯军, 石双虎, 周家惠. 三维大地电磁激电效应特征研究[J]. 西北地震学报, 2009, 31(1):31-34,85.
[19] Xu K J, Shi S H, Zhou J H. Study on induced polarization effect of three dimensional magnetotelluric[J]. Northwestern Seismological Journal, 2009, 31(1):31-34,85.
[20] 付振兴. 考虑激电效应的大地电磁三维正反演研究[D]. 北京: 中国地质大学(北京), 2018.
[20] Fu Z X. Research of the three-dimensional magnetotelluric inversion with induced polarization effect[D]. Beijing: China University of Geosciences(Beijing), 2018.
[21] 黄逸伟. 含激电效应的可控源电磁法三维正演及响应研究[D]. 抚州: 东华理工大学, 2017.
[21] Huang Y W. 3D forward modeling and response analysis of the controlled source electromagnetic signal with IP effect[D]. Fuzhou: East China Institute of Technology, 2017.
[22] Vozoff K. Electromagnetic methods in applied geophysics[J]. Surveys in Geophysics, 1980, 4(1/2):9-29.
[23] 徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社, 1994.
[23] Xu S Z. FEM in Geophysics[M]. Beijing: Science Press, 1994.
[24] 胡英才. 矢量有限元三维张量CSAMT正演模拟研究[D]. 长春: 吉林大学, 2015.
[24] Hu Y C. Three dimensional tensor controlled source electromagnetic modeling based the vector finite element method[D]. Changchun: Jilin University, 2015.
[25] 李子颖, 秦明宽, 范洪海, 等. 我国铀矿地质科技近十年的主要进展[J]. 矿物岩石地球化学通报, 2021, 40(4):845-857,1001.
[25] Li Z Y, Qin M K, Fan H H, et al. Main progresses of uranium geology and exploration techniques for the past decade in China[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2021, 40(4):845-857,1001.
[26] 胡英才, 张濡亮, 王恒. 伊和高勒地区砂岩型铀矿宽频大地电磁数值模拟及应用[J]. 铀矿地质, 2020, 36(5):432-440,476.
[26] Hu Y C, Zhang R L, Wang H. Simulation and application of broadband magnetotelluric sounding for sandstone type uranium deposits in yihegaole area[J]. Uranium Geology, 2020, 36(5):432-440,476.
[27] 王恒, 胡英才, 张濡亮. 铀矿勘查中MT数据提取极化信息可行性研究[J]. 铀矿地质, 2021, 37(2):269-275.
[27] Wang H, Hu Y C, Zhang R L. Feasibility of extracting polarization information from MT data in uranium exploration[J]. Uranium Geology, 2021, 37(2):269-275.
[1] 夏时斌, 廖国忠, 邓国仕, 杨剑, 李富. 高密度电法和音频大地电磁测深法在西南岩溶地区地下水勘探中的应用[J]. 物探与化探, 2024, 48(3): 651-659.
[2] 喻翔, 汪硕, 胡英才, 段书新. 二连盆地北部玄武岩覆盖区电性结构与铀成矿环境研究[J]. 物探与化探, 2022, 46(5): 1157-1166.
[3] 封志兵, 聂冰锋, 聂逢君, 江丽, 夏菲, 李满根, 严兆彬, 何剑锋, 程若丹. 地球物理方法在砂岩型铀矿勘查中的应用进展[J]. 物探与化探, 2021, 45(5): 1179-1188.
[4] 周武, 罗威, 蓝星, 简兴祥. 大地电磁交错采样有限差分二维正反演研究[J]. 物探与化探, 2021, 45(2): 458-465.
[5] 黄笑, 余弘龙, 江丽, 王殿学, 周文博, 马振宇, 张亮亮, 唐国龙. 钍归一化法在松辽盆地开鲁坳陷大林地区地面伽马能谱资料处理中的应用研究[J]. 物探与化探, 2021, 45(2): 316-322.
[6] 杨玉勤, 张翔, 石连成, 邓德伟. 砂岩型铀矿航磁微弱异常提取方法[J]. 物探与化探, 2021, 45(1): 29-36.
[7] 梁建刚, 杨为民, 孙大鹏, 匡海阳. 二维地震勘探在大庆长垣南端砂岩型铀矿勘查中的应用[J]. 物探与化探, 2020, 44(6): 1322-1328.
[8] 吴曲波, 曹成寅, 李子伟. 准噶尔盆地五彩湾地区砂岩型铀矿地震勘探技术[J]. 物探与化探, 2018, 42(6): 1134-1143.
[9] 谭林, 周道卿, 宁墨奂, 秦溱. 频率域航空电磁法人机交互式二维正演研究[J]. 物探与化探, 2018, 42(4): 798-803.
[10] 方慧, 裴发根, 何梅兴, 白大为, 胡祥云, 钟清, 杜炳锐, 张小博, 卢景奇. 音频大地电磁测深法探测冻土区天然气水合物有效性实验[J]. 物探与化探, 2017, 41(6): 1068-1074.
[11] 赵宁博, 付锦, 刘涛, 张东辉. 地形对砂岩型铀矿氡气测量的干扰作用及其修正方法[J]. 物探与化探, 2017, 41(4): 667-671.
[12] 吴曲波, 李子伟, 潘自强, 曹成寅, 乔宝平. 砂岩型铀矿地震勘探技术应用现状与发展[J]. 物探与化探, 2017, 41(4): 648-655.
[13] 徐善法, 刘汉彬, 王玮, 张必敏, 姚文生. 深穿透地球化学方法在十红滩砂岩型铀矿中的试验研究[J]. 物探与化探, 2017, 41(2): 189-193.
[14] 向毕文, 陈儒军, 淳少恒, 姚红春, 吴宏, 刘卫强. 利用指数函数拟合去除扩频激电信号中的电磁耦合感应[J]. 物探与化探, 2015, 39(5): 1053-1058.
[15] 刘武生, 李必红, 史清平, 贾立城, 赵兴齐. 二连盆地砂岩型铀矿土壤氡异常模型及应用[J]. 物探与化探, 2015, 39(2): 234-239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com