Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (3): 651-659    DOI: 10.11720/wtyht.2024.1237
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
高密度电法和音频大地电磁测深法在西南岩溶地区地下水勘探中的应用
夏时斌(), 廖国忠, 邓国仕, 杨剑, 李富
中国地质调查局 成都地质调查中心,四川 成都 610081
Application of high-density electrical resistivity tomography and audio magnetotellurics for groundwater exploration in the karst area in southwestern China
XIA Shi-Bin(), LIAO Guo-Zhong, DENG Guo-Shi, YANG Jian, LI Fu
Chengdu Center of Geological Survey, China Geological Survey, Chengdu 610081, China
全文: PDF(5894 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

云南省会泽县属西南岩溶地区,岩溶地下水是该地区主要的供水水源。为解决当地群众饮水困难的问题,在充分认识会泽地区水文地质条件的基础上,总结出该区地下水赋存概念模型,并结合岩石物性测量结果,对物探方法的适用性和组合优选进行评价。根据地方实际需求,选择在会泽县拖姑村布设了一条高密度电法和音频大地电磁测深法结合的综合剖面,通过电阻率异常圈定了地下水富集部位,有效指导钻孔的布设,单孔最大涌水量为20.76 m3/d,有效解决了当地居民饮水困难的问题。通过该项研究认为,高密度电法和音频大地电磁法相结合的探测方式是在碳酸盐岩地区寻找地下水的优选方法。高密度电法能够精细刻画风化层厚度、基岩界面、裂隙发育程度及地层含水情况,对地下水的补给通道进行约束,弥补了音频大地电磁测深法对近地表地层结构识别能力不足的缺陷。而音频大地电磁测深法能够准确反映断裂破碎带的空间结构和地层的宏观结构,对储水构造的边界条件(隔水层)进行限定,弥补了在高阻地层区,高密度电法探测深度不足的缺陷。二者分别从精度和深度上相互补充,对地下水运移、存储和富集的空间赋存条件进行识别和约束。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏时斌
廖国忠
邓国仕
杨剑
李富
关键词 高密度电法音频大地电磁测深法岩溶地下水    
Abstract

Huize County of Yunnan Province is situated in the karst area in southwestern China, where karst groundwater is its primary water source. To conquer local difficulties in drinking water, this study constructed a conceptual model of groundwater occurrence by fully investigating the hydrogeological conditions of the Huize area. Moreover, this study evaluated the applicability and optimal combination of geophysical methods based on the measurement results of petrophysical properties. According to the actual local needs, this study deployed a comprehensive profile combining high-density electrical resistivity tomography (HDERT) and audio magnetotellurics (AMT) in Tuogu Village, Huize County. The groundwater enrichment site was delineated relying on resistivity anomalies, effectively guiding the layout of boreholes. The boreholes achieved the maximum single-borehole water yield of 20.76 m3/d, thus effectively alleviating the local drinking water problem. The HDERT-AMT combined exploration method proves to be optimal for prospecting for groundwater in carbonate rock areas. HDERT can accurately characterize weathered layer thicknesses, bedrock boundaries, fissure evolutionary degrees, and water-bearing properties of strata, constraining groundwater recharge channels, thus counteracting AMT's defects for identification of near-surface stratigraphic structures. AMT can accurately reflect the spatial structures of fracture zones and the macrostructures of strata, limiting the boundary conditions (aquicludes) of water-bearing structures, thus making up for the defects of insufficient detection depths of HDERT in high-resistivity stratigraphic regions. HDERT and AMT, which are complementary to each other in terms of accuracy and depth, can be applied to identify and constrain the spatial occurrence conditions of groundwater migration, storage, and enrichment.

Key wordshigh-density electrical resistivity tomography    audio magnetotellurics    karst groundwater
收稿日期: 2023-05-30      修回日期: 2023-08-27      出版日期: 2024-06-20
ZTFLH:  P631  
基金资助:中国地质调查局地质调查项目(DD20211381);国家自然科学基金项目(42230311)
作者简介: 夏时斌(1985-),男,工程师,2019年毕业于成都理工大学,主要从事地球物理勘探工作。Email:253509818@qq.com
引用本文:   
夏时斌, 廖国忠, 邓国仕, 杨剑, 李富. 高密度电法和音频大地电磁测深法在西南岩溶地区地下水勘探中的应用[J]. 物探与化探, 2024, 48(3): 651-659.
XIA Shi-Bin, LIAO Guo-Zhong, DENG Guo-Shi, YANG Jian, LI Fu. Application of high-density electrical resistivity tomography and audio magnetotellurics for groundwater exploration in the karst area in southwestern China. Geophysical and Geochemical Exploration, 2024, 48(3): 651-659.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1237      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I3/651
Fig.1  会泽地区地下水类型分布
Fig.2  研究区地质简图与电法剖面位置
岩石类型 变化范围/(Ω·m) 平均值/(Ω·m)
玄武岩 1182.1~2096.8 1885.4
砂岩 105.7~1378.4 387.2
灰岩 3485.2~3885.1 3245.7
白云岩 3028.4~3765.5 3346.8
泥岩 352.3~622.5 486.2
Table 1  会泽地区岩石电阻率
Fig.3  研究区地下水赋存概念模型
Fig.4  高密度电法剖面(a)和音频大地电磁剖面(b)反演异常
Fig.5  高密度电法剖面反演异常(a)及其推断解释(b)
Fig.6  音频大地电磁剖面反演异常(a)及其推断解释(b)
[1] 邹胜章, 朱明秋, 唐建生, 等. 西南岩溶区水资源安全与对策[J]. 地质学报, 2006, 80(10):1637-1642.
[1] Zou S Z, Zhu M Q, Tang J S, et al. Water resources secirity in Karst area of southwest China:Problems and counterm easures[J]. Acta Geologica Sinica, 2006, 80(10):1637-1642.
[2] 蒋忠诚, 夏日元, 时坚, 等. 西南岩溶地下水资源开发利用效应与潜力分析[J]. 地球学报, 2006, 27(5):495-502.
[2] Jiang Z C, Xia R Y, Shi J, et al. The application effects and exploitation capacity of Karst underground water resources in southwest China[J]. Acta Geoscientica Sinica, 2006, 27(5):495-502.
[3] 王宇. 岩溶找水与开发技术研究[M]. 北京: 地质出版社, 2007.
[3] Wang Y. Study on Karst water exploration and development technology[M]. Beijing: Geological Publishing House, 2007.
[4] 石应骏. 大地电磁测深法教程:高等学校教学用书[M]. 北京: 地震出版社,1985.
[4] Shi Y J. Course of magnetotelluric sounding:A teaching book for colleges and universities[M]. Beijing: Seismological Press,1985.
[5] 林君. 核磁共振找水技术的研究现状与发展趋势[J]. 地球物理学进展, 2010, 25(2):681-691.
[5] Lin J. Situation and progress of nuclear magnetic resonance technique for groundwater investigations[J]. Progress in Geophysics, 2010, 25(2):681-691.
[6] Chirindja F J, Dahlin T, Juizo D, et al. Reconstructing the formation of a costal aquifer in Nampula Province,Mozambique,from ERT and IP methods for water prospection[J]. Environmental Earth Sciences, 2016, 76(1):36.
[7] Kouadio K L, Xu Y X, Liu C M, et al. Two-dimensional inversion of CSAMT data and three-dimensional geological mapping for groundwater exploration in Tongkeng Area,Hunan Province,China[J]. Journal of Applied Geophysics, 2020,183:104204.
[8] 齐信, 黎清华, 张再天, 等. 海南省琼中县花岗岩地区含水层电性特征及地下水赋存规律[J]. 地质通报, 2021, 40(6):1001-1009.
[8] Qi X, Li Q H, Zhang Z T, et al. Electrical characteristics and storage rules of groundwater in granite area of Qiongzhong County,Hainan Province[J]. Geological Bulletin of China, 2021, 40(6):1001-1009.
[9] Metwaly M, Elawadi E, Moustafa S S R, et al. Groundwater contamination assessment in Al-Quwy’yia area of central Saudi Arabia using transient electromagnetic and 2D electrical resistivity tomography[J]. Environmental Earth Sciences, 2014, 71(2):827-835.
[10] 屈利军, 李波, 周佩. 综合物探方法在湘中贫水山区找水中的应用[J]. 物探与化探, 2017, 41(5):835-839.
[10] Qu L J, Li B, Zhou P. The application of multiple geophysical methods to water exploration in the arid areas of central Hunan Province[J]. Geophysical and Geochemical Exploration, 2017, 41(5):835-839.
[11] 刘春伟, 王重, 胡彩萍, 等. 综合物探方法在胶东岩浆岩缺水山区找水中的应用[J]. 物探与化探, 2023, 47(2):512-522.
[11] Liu C W, Wang C, Hu C P, et al. Application of a comprehensive geophysical exploration methods to water exploration in magmatic rock mountainous areas with water shortage in Jiaodong Peninsula[J]. Geophysical and Geochemical Exploration, 2023, 47(2):512-522.
[12] 底青云, 石昆法, 王妙月, 等. CSAMT法和高密度电法探测地下水资源[J]. 地球物理学进展, 2001, 16(3):53-57,127.
[12] Di Q Y, Shi K F, Wang M Y, et al. Water resources exploration with CSAMT and high density electric resistivity method[J]. Progress In Geophysics, 2001, 16(3):53-57,127.
[13] 郑智杰, 曾洁, 赵伟, 等. 高密度电法在岩溶区找水中的应用研究[J]. 地球物理学进展, 2019, 34(3):1262-1267.
[13] Zheng Z J, Zeng J, Zhao W, et al. Application research of high density resistivity method in water exploring in Karst area[J]. Progress in Geophysics, 2019, 34(3):1262-1267.
[14] 董浩斌, 王传雷. 高密度电法的发展与应用[J]. 地学前缘, 2003, 10(1):171-176.
[14] Dong H B, Wang C L. Development and application of 2d resistivity imaging surveys[J]. Earth Science Frontiers, 2003, 10(1):171-176.
[15] 刘国兴. 电法勘探原理与方法[M]. 北京: 地质出版社, 2005.
[15] Liu G X. Principles and methods of electrical exploration[M]. Beijing: Geological Publishing House, 2005.
[16] 陈乐寿, 王光锷. 大地电磁测深法[M]. 北京: 地质出版社,1990.
[16] Chen L S, Wang G E. Magnetotelluric sounding[M]. Beijing: Geological Publishing House,1990.
[17] 李伟, 朱庆俊, 王洪磊, 等. 西南岩溶地区找水技术方法探讨[J]. 地质与勘探, 2011, 47(5):918-923.
[17] Li W, Zhu Q J, Wang H L, et al. On methods of finding water in the Karst zones of southwest China[J]. Geology and Exploration, 2011, 47(5):918-923.
[18] 李伟, 朱庆俊, 王洪磊, 等. 西南岩溶地区找水技术方法探讨[J]. 地质与勘探, 2011, 47(5):918-923.
[18] Li W, Zhu Q J, Wang H L, et al. On methods of finding water in the Karst zones of southwest China[J]. Geology and Exploration, 2011, 47(5):918-923.
[19] Romo J, Flores C, Vega R, et al. A closely-spaced magnetotelluric study of the Ahuachapán-Chipilapa geothermal field,El Salvador[J]. Geothermics, 1997, 26(5/6):627-656.
[20] Tripaldi S, Siniscalchi A, Spitzer K. A method to determine the magnetotelluric static shift from DC resistivity measurements in practice[J]. Geophysics, 2010, 75(1):F23-F32.
[21] Rodi W, Mackie R L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion[J]. Geophysics, 2001, 66(1):174-187.
[1] 庞永昊, 沈昭昂, 常志喜, 李广场, 陈美, 谢志伟, 王威. 基于非对称设计的高密度电法观测装置研究[J]. 物探与化探, 2024, 48(3): 786-793.
[2] 周建兵, 罗锐恒, 贺昌坤, 潘晓东, 张绍敏, 彭聪. 文山小河尾水库岩溶含水渗漏通道的地球物理新证据[J]. 物探与化探, 2023, 47(3): 707-717.
[3] 覃剑文, 姜晓腾, 谢贵城, 孙汉武, 何流, 孙怀凤. 基于高密度电法的城市复杂环境岩溶探查研究——以贵港市北环新村为例[J]. 物探与化探, 2023, 47(2): 530-539.
[4] 王强, 田野, 刘欢, 朱春光, 白超琨, 郝森. 综合物探方法在煤矿采空区探测中的应用[J]. 物探与化探, 2022, 46(2): 531-536.
[5] 丁卫忠, 孙夫文, 李建华, 郑采君, 林品荣, 齐方帅. 城市地下空间探测多参数并行高密度电法系统研制[J]. 物探与化探, 2021, 45(6): 1448-1454.
[6] 陈学群, 李成光, 田婵娟, 刘丹, 辛光明, 管清花. 高密度电阻率法在咸水入侵监测中的应用[J]. 物探与化探, 2021, 45(5): 1347-1353.
[7] 苏宝, 刘晓丽, 卫晓波, 高歌, 王云鹏. 井间超高密度电阻率法溶洞探测研究[J]. 物探与化探, 2021, 45(5): 1354-1358.
[8] 吴教兵, 黎峻良, 江兰, 陆俊宏, 潘黎黎, 韦王秋. 综合物探方法在广西罗城县活动断裂鉴定中的应用[J]. 物探与化探, 2021, 45(2): 346-354.
[9] 危志峰, 陈后扬, 吴西全. 广域电磁法在宜春某地地热勘查中的应用[J]. 物探与化探, 2020, 44(5): 1009-1018.
[10] 苏永军, 范翠松, 赵更新, 张国利, 刘宏伟, 孙大鹏. 综合电法在探测海水入侵界面中的研究与应用——以莱州湾地区为例[J]. 物探与化探, 2020, 44(3): 704-708.
[11] 王战军. 电法在追索水库坝区地下暗河中的应用[J]. 物探与化探, 2019, 43(5): 1157-1162.
[12] 孙大利, 李貅, 齐彦福, 孙乃泉, 李文忠, 周建美, 孙卫民. 基于非结构网格三维有限元堤坝隐患时移特征分析[J]. 物探与化探, 2019, 43(4): 804-814.
[13] 方慧, 裴发根, 何梅兴, 白大为, 胡祥云, 钟清, 杜炳锐, 张小博, 卢景奇. 音频大地电磁测深法探测冻土区天然气水合物有效性实验[J]. 物探与化探, 2017, 41(6): 1068-1074.
[14] 曹煜, 刘盛东, 唐润秋, 陈兴海, 戚俊, 周官群, 王宗涛. 电法并行采集AM排列推导ABM排列技术研究[J]. 物探与化探, 2016, 40(6): 1157-1165.
[15] 李俊杰, 何建设, 严家斌, 荣鑫, 李阳. 超高密度电阻率法在隐伏断层探测中的应用[J]. 物探与化探, 2016, 40(3): 624-628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com