Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (1): 162-174    DOI: 10.11720/wtyht.2024.1140
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
高干扰矿集区大地电磁噪声抑制技术探索
郝社锋1,2(), 田少兵2(), 梅荣2, 彭荣华3, 李兆令4
1.南京大学 地球科学与工程学院,江苏 南京 210023
2.江苏省地质调查研究院,江苏 南京 210049
3.中国地质大学(武汉) 地球物理与空间信息学院,湖北 武汉 430074
4.山东省第五地质矿产勘查院,山东 泰安 271000
Exploring electromagnetic noise suppression technologies for magnetotelluric sounding in high-interference ore districts
HAO She-Feng1,2(), TIAN Shao-Bing2(), MEI Rong2, PENG Rong-Hua3, LI Zhao-Ling4
1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
2. Geological Survey of Jiangsu Province, Nanjing 210049, China
3. School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China
4. 5th Exploration Institute of Geology and Mineral Resources of Shandong Province, Tai'an 271000, China
全文: PDF(9636 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

大地电磁测深(MT)在矿产资源勘探方面应用广泛,但强人文电磁干扰严重制约了高质量的原始MT数据的获取。本文详细总结了国内常见电磁噪声源的类型,对其产生的电磁噪声特征进行分类分析;对国内外MT电磁噪声去噪方法进行对比,结合实际生产需求,总结了一套适用于高干扰矿集区快速有效的MT数据去噪施工与处理工艺。研究表明:Robust处理、远参考道技术和人工挑选是提高MT数据采集质量的有效和必要的手段,而通过理论计算,远参考站设置距离不小于3.56倍趋肤深度即可;在江苏洪泽盐盆矿集区开展的MT试验工作验证了该设定。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝社锋
田少兵
梅荣
彭荣华
李兆令
关键词 大地电磁测深电磁噪声去噪远参考道矿集区    
Abstract

Magnetotelluric sounding (MT) has been extensively applied in mineral resource exploration. However, strong anthropogenic electromagnetic interference severely constrains the acquisition of high-quality original MT data. This study provided a detailed summary of the common types of electromagnetic noise sources in China and analyzed the characteristics of electromagnetic noise they produced. By comparing the methods for MT electromagnetic noise reduction at home and abroad, this study developed a rapid and effective construction and processing technology for MT data denoising in high-interference ore districts based on actual production demands. The results indicate that Robust processing, remote reference technique, and manual selection are effective and necessary in enhancing MT data quality. Besides, theoretical calculations suggest that the distance between the remote reference stations should be set at 3.56-fold skin depth or above, as verified by the MT experiments in the ore district of the Hongze salt basin, Jiangsu Province.

Key wordsmagnetotelluric sounding (MT)    electromagnetic noise    denoising    remote reference method    ore concentration area
收稿日期: 2023-04-10      修回日期: 2023-06-08      出版日期: 2024-02-20
ZTFLH:  P631.1  
基金资助:江苏省矿地融合试点项目(苏财资环[2022]19号);江苏省地质勘查专项资金项目(苏财建[2018]96号)
通讯作者: 田少兵(1990-),男,高级工程师,主要从事电磁法勘探与地热资源勘查的研究工作。Email:506006927@qq.com
作者简介: 郝社锋(1977-),男,正高级工程师,主要从事地质资源与地质工程方向的研究工作。Email:34746594@qq.com
引用本文:   
郝社锋, 田少兵, 梅荣, 彭荣华, 李兆令. 高干扰矿集区大地电磁噪声抑制技术探索[J]. 物探与化探, 2024, 48(1): 162-174.
HAO She-Feng, TIAN Shao-Bing, MEI Rong, PENG Rong-Hua, LI Zhao-Ling. Exploring electromagnetic noise suppression technologies for magnetotelluric sounding in high-interference ore districts. Geophysical and Geochemical Exploration, 2024, 48(1): 162-174.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1140      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I1/162
Fig.1  全球电磁场强度平均振幅特征[4]
Fig.2  大地电磁数据在不同干扰情况下的视电阻率、相位曲线
噪声类型 噪声来源 影响方式 主要特征 影响范围
方波 电子设备开关瞬间、车辆点火等 近源效应 对电场数据影响大,对磁场数据影响小 100~0.1Hz,影响范围大
三角波和类三角波 电动机调速、阀门控制、车辆活动等 近源效应、视电阻率值极小或极大 不规则三角波形,常出现在磁道中 10 Hz以下的低频信号
阶跃 机动车点火用电设备开关释放电火花设备等 近源效应 台阶状信号,常与脉冲噪声同时出现 1~0.01Hz的低频信号
脉冲 机动车点火、用电设备开关、释放电火花设备产生游散电流等 数据畸变、飞点 频率范围宽,几乎影响整个频率域 所有频率,0.1 Hz最严重
充放电 大功率用电设备、发电厂、产生电火花设备等 分段、整体偏移,近源效应 持续时间不定,集中出现 10~0.01Hz
周期 高压输电线、工厂等工业设备 高频段无规律跳跃 等振幅正弦谐波 50 Hz和50 Hz倍数谐波
Table 1  人文电磁噪声类型及特征
方法 方式 特点 缺陷 效果 备注 参考文献
互功率谱法 计算阻抗的互功率谱 可克服通道之间不相关噪声 各道噪声信号大多相关 有一定压制作用,不能明显解决问题 Goubua[24]
Robust处理法 根据观察误差对数据进行加权处理 注重未受干扰数据,降低飞点权重 无法消除相关噪声和输入端噪声 可以有效减小曲线分散度 普遍应用 Egbert等[21];Chave等[22];Sutarno等[23]
远参考道技术 远离噪声源布设参考站 噪声不相关,信号高相关 无法消除死频带数据的近场效应 可以有效抑制相关噪声的影响 广泛应用 Gamble等[16];Goubau等[24] ; Clarke等[8];陈清礼等[25];杨生等[19];Ueharai等[26] ;徐志敏等[27];张刚[28]
小波变换去噪法 通过伸缩和平移等运算对信号进行细化分析 时频局域性多尺度细化分析 依赖小波基函数的选取和基函数阈值的设置 可解决特性问题,需人为分析基函数与阈值 缺乏自适应性 Mallat[29];何兰芳等[30];Trad等[31];凌振等[13];Anvari等[32];Cai等[33];万云霞等[34]
H-H变换 经验模态分析和Hilbert spectrum分析 可处理非线性、非平稳信号 算法效率低,易出现模态混叠现象 可有效压制基线漂移以及高频噪声、工频干扰等典型噪声 无法满足实时性需求 Huang等[35];Cai[36];Cai等[37];陈钧等[38]
稀疏分解法 压缩感知和信号的稀疏分解 需构建谐波方波、尖冲干扰等干扰数据库 耗时较长;算法效率低;易陷入局部最优解 可分离信号中的人文干扰,保留有用信号 无法完全匹配噪声形态 Mallat[29];Donoho[39];汤井田等[40]
RhoPlus校正法 由高质量数据估算Rho+模型,通过模型推算“死频带”数据 确保地电维性为1D及2D;死频带前后具有一定频率高质量数据 对原始数据质量的要求较高,需要有较高的信噪比 对AMT死频带具有较好效果,可引入MT资料处理中 适用于高质量数据死频带校正 Parker[41];周聪等[20];李红领等[42]
MT时间序列同步依赖关系去噪法 利用天然电磁场之间相关性建立本地与参考点的依赖关系 不改变原始时间序列文件格式 确保测站被影响的时间序列有限 对死频带范围内处理效果优于远参考法 配合远参考道技术综合利用 王辉等[14]
人工挑选 依据电阻率与相位之间的相关性等对数据进行人工挑选 可依据测点已知地质情况,有选择性的挑选数据 具有较大的人为因素,对处理人员专业素质要求高 可大幅度提升原始曲线质量 应用广泛,需经验丰富人员
Table 2  大地电磁噪声压制方法对比
Fig.3  大地电磁数据噪声抑制施工与处理工艺
Fig.4  电磁波振幅衰减与趋肤深度关系
Fig.5  最小参考距离与地下介质电阻率及频率的关系
Fig.6  江苏淮安洪泽盐盆勘查区电磁干扰概况
站点 周边情况 距噪声源距离 噪声特征 综合评价
SY1 无明显干扰源 2~3 km以上 少量脉冲噪声 对比点,低干扰
SY2 民居、采矿井、工厂、信号塔、公路等 100 m以内 周期、阶跃、脉冲、充放电噪声 混合型高干扰
SY3 采矿生产设备井、民用电线 100 m 三角波、方波、充放电、脉冲噪声 有地下未知干扰源,噪声干扰严重
SY4 矿区阴极保护站、民房、道路、民用电线 100 m以内 周期、充放电、阶跃、三角波噪声 矿区接地电流影响严重
SY5 西北和南部高压输送线、北边城镇 100 m和
300 m
周期、脉冲噪声 高压输送线影响严重
YC1 农田、农户 3.56δ,约25 km 脉冲噪声 低干扰
YC2 200m民用电线 13δ,约
90 km
脉冲、周期噪声 中低干扰
YC3 山中树林 27δ,约
188 km
脉冲噪声 低干扰
YC4 湖边荒地 5δ,约
35 km
脉冲噪声 低干扰
Table 3  试验区测站与远参考站情况一览
Fig.7  SY2试验点基本情况一览
Fig.8  SY3试验点基本情况一览
Fig.9  SY1测站与SY3测站不同参考距实验结果对比
-YC1、-YC2、-YC3分别表示使用YC1、YC2、YC3远参考站处理后的结果;-RG表示远参考站处理后又经过人工挑选的结果
Fig.10  SY2测站不同参考距实验结果对比
-YC1、…-YC4分别表示使用YC1、…YC4远参考站处理后的结果;-RG表示远参考站处理后又经过人工挑选的结果
Fig.11  SY4测站与SY5测站不同参考距实验结果对比
-YC4表示使用YC4远参考站处理后的结果;-RG表示远参考站处理后又经过人工挑选的结果
[1] 姜建军. 实施“三深一土” 国土资源科技创新发展战略的思考[J]. 国土资源科技管理, 2017, 34(3):1-8.
[1] Jiang J J. Thoughts on implementing the strategy of “three depths and one soil” for scientific and technological innovation and development of land and resources[J]. Scientific and Technological Management of Land and Resources, 2017, 34(3):1-8.
[2] 杨长福, 徐世浙. 国外大地电磁研究现状[J]. 物探与化探, 2005, 29(3):243-247.
[2] Yang C F, Xu S Z. The present situation of magnetotelluric researches abroad[J]. Geophysical and Geochemical Exploration, 2005, 29(3):243-247.
[3] 陈乐寿. 大地电磁测深——探测地球深部电性和物质状态的一种有效手段[J]. 自然杂志, 2009, 31(1):39-46.
[3] Chen L S. Magnetotelluric sounding:An effective approch to survey electrical property and state of matter in the deep earth[J]. Chinese Journal of Nature, 2009, 31(1):39-46.
[4] 陈乐寿, 王光锷. 大地电磁测深法[M]. 北京: 地质出版社,1990.
[4] Chen L S, Wang G E. Magnetotelluric sounding method[M]. Beijing: Geological Publishing House,1990.
[5] Fischer G. The magnetotelluric sounding method[J]. Eos,Transactions American Geophysical Union, 1982, 63(29):578.
[6] 张全胜, 杨生. 大地电磁测深资料去噪方法应用研究[J]. 石油物探, 2002, 41(4):493-499.
[6] Zhang Q S, Yang S. An application study of noise elimination for magnetotelluric sounding data[J]. Geophysical Prospecting For Petrole, 2002, 41(4):493-499.
[7] 杨生. 大地电磁测深法环境噪声抑制研究及其应用[D]. 长沙: 中南大学, 2004.
[7] Yang S. The study of restraining environmental noise and its application in magnetotelluric sounding[D]. Changsha: Central South University, 2004.
[8] Clarke J, Gamble T D, Goubau W M, et al. Remote-reference magnetotellurics:Equipment and procedures[J]. Geophysical Prospecting, 1983, 31(1):149-170.
doi: 10.1111/gpr.1983.31.issue-1
[9] 孙洁, 晋光文, 白登海, 等. 大地电磁测深资料的噪声干扰[J]. 物探与化探, 2000, 24(2):119-127.
[9] Sun J, Jin G W, Bai D H, et al. The noise interference of magnetotelluric sounding data[J]. Geophysical and Geochemical Exploration, 2000, 24(2):119-127.
[10] 凌振宝, 王沛元, 万云霞, 等. 强人文干扰环境的电磁数据小波去噪方法研究[J]. 地球物理学报, 2016, 59(9):3436-3447.
doi: 10.6038/cjg20160926
[10] Ling Z B, Wang P Y, Wan Y X, et al. A combined wavelet transform algorithm used for de-noising magnetotellurics data in the strong human noise[J]. Chinese Journal of Geophysics, 2016, 59(9):3436-3447.
[11] 朱威, 范翠松, 姚大为, 等. 矿集区大地电磁噪声场源分析及噪声特点[J]. 物探与化探, 2011, 35(5):658-662.
[11] Zhu W, Fan C S, Yao D W, et al. Noise source analysis and noise characteristics study of mt in an ore concentration area[J]. Geophysical and Geochemical Exploration, 2011, 35(5):658-662.
[12] 徐志敏, 汤井田, 强建科. 矿集区大地电磁强干扰类型分析[J]. 物探与化探, 2012, 36(2):214-219.
[12] Xu Z M, Tang J T, Qiang J K. An analysis of the magnetotelluric strong interference types in ore concentration areas[J]. Geophysical and Geochemical Exploration, 2012, 36(2):214-219.
[13] 葛双超, 李斌. 大地电磁法人文噪声干扰特点及处理方法综述[J]. 物探化探计算技术, 2021, 43(5):609-619.
[13] Ge S C, Li B. Review of the characteristics and processing methods of human noise interference in magnetotelluric[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2021, 43(5):609-619.
[14] 王辉, 程久龙, 腾星智, 等. 矿区近场源噪声对大地电磁测深数据的影响及其压制方法[J]. 地球物理学进展, 2016, 31(3):1358-1366.
[14] Wang H, Cheng J L, Teng X Z, et al. Source effect on magnetotelluric data due to mining area and its suppression[J]. Progress in Geophysics, 2016, 31(3):1358-1366.
[15] 周聪, 汤井田, 原源, 等. 强干扰区含噪电磁场的时空分布特征[J]. 吉林大学学报:地球科学版, 2020, 50(6):1870-1886.
[15] Zhou C, Tang J T, Yuan Y, et al. Spatial and temporal distribution characteristics of electromagnetic fields in strong noise area[J]. Journal of Jilin University:Earth Science Edition, 2020, 50(6):1870-1886.
[16] Gamble T D, Goubau W M, Clarke J. Magnetotellurics with a remote magnetic reference[J]. Geophysics, 1979, 44(1):53-68.
doi: 10.1190/1.1440923
[17] Ritter O, Junge A, Dawes G J K. New equipment and processing for magnetotelluric remote reference observations[J]. Geophysical Journal International, 1998, 132(3):535-548.
doi: 10.1046/j.1365-246X.1998.00440.x
[18] Shalivahan, Bhattacharya B B.How remote can the far remote reference site for magnetotelluric measurements be?[J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B6):1-7.
[19] 杨生, 鲍光淑, 张全胜. 远参考大地电磁测深法应用研究[J]. 物探与化探, 2002, 26(1):27-31,49.
[19] Yang S, Bao G S, Zhang Q S. A study on the application of remote reference magnetotelluric sounding technique[J]. Geophysical and Geochemical Exploration, 2002, 26(1):27-31,49.
[20] 周聪, 汤井田, 任政勇, 等. 音频大地电磁法“死频带” 畸变数据的Rhoplus校正[J]. 地球物理学报, 2015, 58(12):4648-4660.
doi: 10.6038/cjg20151226
[20] Zhou C, Tang J T, Ren Z Y, et al. Application of the Rhoplus method to audio magnetotelluric dead band distortion data[J]. Chinese Journal of Geophysics, 2015, 58(12):4648-4660.
[21] Egbert G D, Booker J R. Robust estimation of geomagnetic transfer functions[J]. Geophysical Journal International, 1986, 87(1):173-194.
doi: 10.1111/gji.1986.87.issue-1
[22] Chave A D, Thomson D J, Ander M E. On the robust estimation of power spectra,coherences,and transfer functions[J]. Journal of Geophysical Research:Solid Earth, 1987, 92(B1):633-648.
[23] Sutarno D, Vozoff K. Robust M-estimation of magnetotelluric impedance tensors[J]. Exploration Geophysics, 1989, 20(3):383-398.
doi: 10.1071/EG989383
[24] Goubau W M, Gamble T D, Clarke J. Magnetotelluric data analysis:Removal of bias[J]. Geophysics, 1978, 43(6):1157-1166.
doi: 10.1190/1.1440885
[25] 陈清礼, 胡文宝, 苏朱刘, 等. 长距离远参考大地电磁测深试验研究[J]. 石油地球物理勘探, 2002, 37(2):145-148,200.
[25] Chen Q L, Hu W B, Su Z L, et al. Study for long-distant and far-referential MT[J]. Oil Geophysical Prospecting, 2002, 37(2):145-148,200.
[26] Ueharai D, Ishimaru T, Tanase A, et al. Effectiveness of far remote reference method on magnetotelluric(MT)survey and deep resistivity structure in the southern region of the kii peninsula,southwest Japan[J]. Journal of the Japan Society of Engineering Geology, 2003, 44(3):164-174.
doi: 10.5110/jjseg.44.164
[27] 徐志敏, 辛会翠, 吕扶君. 庐枞矿集区大地电磁法的远参考效果研究[J]. 地球物理学进展, 2014, 29(4):1822-1830.
[27] Xu Z M, Xin H C, Lyu F J. Ore cluster area of Luzong magnetotelluric(MT)method of remote reference research[J]. Progress in Geophysics, 2014, 29(4):1822-1830.
[28] 张刚. 长周期大地电磁数据处理方法研究[D]. 成都: 成都理工大学, 2015.
[28] Zhang G. Research on long-period magnetotelluric data processing[D]. Chengdu: Chengdu University of Technology, 2015.
[29] Mallat S G. A theory for multiresolution signal decomposition:The wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7):674-693.
doi: 10.1109/34.192463
[30] 何兰芳, 王绪本, 王成祥. 应用小波分析提高MT资料信噪比[J]. 成都理工学院学报, 1999, 26(3):299-302.
[30] He L F, Wang X B, Wang C X. Improving the s/n ratio of mt data by wavelet analysis[J]. Journal of Chengdu University of Technology, 1999, 26(3):299-302.
[31] Trad D O, Travassos J M. Wavelet filtering of magnetotelluric data[J]. Geophysics, 2000, 65(2):482-491.
doi: 10.1190/1.1444742
[32] Anvari R, Nazari Siahsar M A, Gholtashi S, et al. Seismic random noise attenuation using synchrosqueezed wavelet transform and low-rank signal matrix approximation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11):6574-6581.
doi: 10.1109/TGRS.2017.2730228
[33] Cai J H, Xiao Y L. Impulse interference processing for MT data based on a new adaptive wavelet threshold de-noising method[J]. Arabian Journal of Geosciences, 2017, 10(18):407.
doi: 10.1007/s12517-017-3194-7
[34] 万云霞, 王力鑫, 张宏伟, 等. 基于小波变换的MT数据人文噪声抑制方法[J]. 吉林大学学报:信息科学版, 2021, 39(6):624-629.
[34] Wan Y X, Wang L X, Zhang H W, et al. Research on human noise suppression of MT data based on wavelet transform[J]. Journal of Jilin University:Information Science Edition, 2021, 39(6):624-629.
[35] Huang N E, Shen Z, Long S R. A new view of nonlinear water waves:The Hilbert spectrum[J]. Annual Review of Fluid Mechanics, 1999, 31:417-457.
doi: 10.1146/fluid.1999.31.issue-1
[36] Cai J H. A combinatorial filtering method for magnetotelluric time-series based on Hilbert-Huang transform[J]. Exploration Geophysics, 2014, 45(2):63-73.
doi: 10.1071/EG13012
[37] Cai J H. A combinatorial filtering method for magnetotelluric data series with strong interference[J]. Arabian Journal of Geosciences, 2016, 9(13):628.
doi: 10.1007/s12517-016-2658-5
[38] 陈钧, 严良俊, 周磊. 基于Hilbert-Huang 变换的大地电磁去噪研究[J]. 物探与化探, 2021, 45(6):1462-1468.
[38] Chen J, Yan L J, Zhou L. Denoising of magnetotelluric data based on Hilbert-Huang transform[J]. Geophysical and Geochemical Exploration, 2021, 45(6):1462-1468.
[39] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
doi: 10.1109/TIT.2006.871582
[40] 汤井田, 李广, 肖晓, 等. 基于压缩感知重构算法的大地电磁强干扰分离[J]. 地球物理学报, 2017, 60(9):3642-3654.
doi: 10.6038/cjg20170928
[40] Tang J T, Li G, Xiao X, et al. Strong noise separation for magnetotelluric data based on a signal reconstruction algorithm of compressive sensing[J]. Chinese Journal of Geophysics, 2017, 60(9):3642-3654.
[41] Parker R L. The inverse problem of electromagnetic induction:Existence and construction of solutions based on incomplete data[J]. Journal of Geophysical Research:Solid Earth, 1980, 85(B8):4421-4428.
[42] 李红领, 王光杰, 杨磊, 等. 基于蒙古东戈壁AMT数据的“死频带” 分析[J]. 地球物理学进展, 2020, 35(6):2153-2158.
[42] Li H L, Wang G J, Yang L, et al. Dead band analysis based on Mongolian East Gobi AMT data[J]. Progress in Geophysics, 2020, 35(6):2153-2158.
[43] 徐志敏, 辛会翠, 谭新平, 等. 强电磁干扰区大地电磁远参考技术试验效果分析[J]. 物探与化探, 2018, 42(3):560-568.
[43] Xu Z M, Xin H C, Tan X P, et al. An analysis of the experimental result of MT remote reference technique in strong electromagnetic interference region[J]. Geophysical and Geochemical Exploration, 2018, 42(3):560-568.
[44] 张刚, 庹先国, 王绪本, 等. 磁场相关性在远参考大地电磁数据处理中的应用[J]. 石油地球物理勘探, 2017, 52(6):1333-1343,1125-1126.
[44] Zhang G, Tuo X G, Wang X B, et al. Application of magnetic field correlation in remote reference magnetotelluric data processing[J]. Oil Geophysical Prospecting, 2017, 52(6):1333-1343,1125-1126.
[45] 田少兵, 刘必良, 梅荣, 等. 东部沿海低阻区大地电磁测深远参考试验研究[J]. 地球物理学进展, 2022, 37(1):430-442.
[45] Tian S B, Liu B L, Mei R, et al. Study on the application of remote reference magnetotelluric sounding technique in low resistance area of east coast of China[J]. Progress in Geophysics, 2022, 37(1):430-442.
[46] 汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.
[46] Tang J T, He J S. Controlled source audio magnetotelluric method and its application[M]. Changsha: Central South University Press, 2005.
[47] 张良怀, 李征西, 张京辉, 等. 50万伏超高压输电线的电磁场时空分布特征及其实验研究[J]. 东北地震研究, 1998(1):17-30.
[47] Zhang L H, Li Z X, Zhang J H, et al. Experimental research of electromagnetic field distribution around 500kv supervoltage power line[J]. Seismological Research of Northeast China, 1998(1):17-30.
[1] 万卫, 汪明启, 程志中, 范会虎, 左立波, 李俊辉. CO2、SO2气体地球化学测量方法在森林覆盖区找矿的试验研究[J]. 物探与化探, 2023, 47(5): 1137-1146.
[2] 杨海, 徐学义, 熊盛青, 杨雪, 高卫宏, 范正国, 贾志业. 凤太矿集区航空地球物理异常特征及找矿方向[J]. 物探与化探, 2023, 47(5): 1157-1168.
[3] 吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
[4] 张阳阳, 杜威, 王芝水, 缪旭煌, 张翔. 基于Lévay飞行的粒子群算法在大地电磁反演中的应用[J]. 物探与化探, 2023, 47(4): 986-993.
[5] 杨天春, 胡峰铭, 于熙, 付国红, 李俊, 杨追. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4): 1010-1017.
[6] 蒋首进, 陈永凌, 李怀远, 胡俊峰. 藏东南冻错曲塘布段冰碛物电阻率特征[J]. 物探与化探, 2023, 47(1): 73-80.
[7] 孙海川. 兰州新区西部恐龙园区块地热地质条件分析[J]. 物探与化探, 2022, 46(6): 1411-1418.
[8] 黄泽佼, 徐子东, 罗晗, 黄远生. 希尔伯特—黄变换(HHT)在EH-4数据去噪处理中的应用[J]. 物探与化探, 2022, 46(5): 1232-1240.
[9] 杨凯, 唐卫东, 刘诚, 贺景龙, 姚川. 基于LSTM循环神经网络的大地电磁方波噪声抑制[J]. 物探与化探, 2022, 46(4): 925-933.
[10] 赵理芳, 李爱勇, 王导丽, 张明鹏, 周锡明. 基于电阻率测井曲线的大地电磁测深标定[J]. 物探与化探, 2022, 46(3): 737-742.
[11] 谢兴隆, 马雪梅, 龙慧, 明圆圆, 孙晟. 基于Curvelet变换的线杆共振干扰去除方法[J]. 物探与化探, 2022, 46(2): 474-481.
[12] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[13] 王文杰, 郝一, 薄海军, 王海龙, 徐浩清, 李永利, 毛磊, 刘永新, 袁帅. 包头市固阳县矿集区高密度电阻率法找水定井实例分析[J]. 物探与化探, 2021, 45(4): 869-881.
[14] 田郁, 乐彪. 复杂异常体模型下的三维MT倾子正演模拟[J]. 物探与化探, 2021, 45(4): 1021-1029.
[15] 王佳龙, 邸兵叶, 张宝松, 赵东东. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3): 576-582.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com