Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (3): 653-660    DOI: 10.11720/wtyht.2022.1337
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
基于MRAS证据权重模型的河南老湾地区金矿成矿预测
魏从玲(), 陈建立(), 郭鹏
河南省地质矿产勘查开发局第一地质勘查院,河南 郑州 450001
Metallogenic prediction of gold deposits in Laowan area, Henan Province using the weight of evidence model and MRAS
WEI Cong-Ling(), CHEN Jian-Li(), GUO Peng
No. 1 Geology and Mineral Resources Survey Institute,Henan Bureau of Geology and Mineral Development, Zhengzhou 450001, China
全文: PDF(2327 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

河南省老湾地区是桐柏—大别有色贵金属成矿带上重要的金成矿区。在综合分析该区成矿因素的基础上,提取构置了地层、韧性剪切域、脆性断束、岩浆岩、与Au有关的蚀变带和Au、As、Sb、Ag水系沉积物单元素异常等9个预测变量,基于MRAS软件,采用证据权重模型对该区金矿进行了成矿远景预测工作。本次采用0.10 km×0.10 km的网格单元进行预测,经过各预测变量的先验概率计算、权重值统计、独立性检验和后验概率的计算等过程,划分出A、B、C三个级别的成矿远景区块,根据预测网格分布特点及该区金矿地质特征,圈出了Ⅰ级找矿远景区4处,Ⅱ级找矿远景区4处。综合分析认为:已知金矿床或矿点多数落入A级或B级成矿远景区块,C级成矿远景区块主要是在A级或B级成矿远景区块的周边,与成矿区带从中心向边缘渐变的特征相符合;圈出的Ⅰ级找矿远景区内均已发现金矿床(点),并且后验概率平均值较高,具有较好的金矿找矿潜力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏从玲
陈建立
郭鹏
关键词 MRAS证据权重模型金矿成矿预测河南老湾    
Abstract

The Laowan area in Henan Province is an important gold minerogenetic area in the Tongbai-Dabie noble nonferrous metal metallogenic belt. Based on the comprehensive analysis of the metallogenic factors of the area, the authors extracted and established nine predictive variables, i.e., strata, ductile shear zones, brittle fault zones, magmatic rocks, gold-related alteration zones, and single-element anomalies of gold, arsenic, antimony, and sliver in stream sediments. Then, the authors predicted metallogenic prospect areas of gold in this area using the weight of evidence model and the MRAS software. Grid cells with a size of 0.10 km×0.10 km were used for prediction, and they were divided into classes A, B, and C in terms of prospecting prediction through the prior probability calculation, weight statistics, independence tests, and posterior probability calculation of each prediction variable. Based on the distribution characteristics of various classes of prediction grid cells and the geological characteristics of gold deposits in the study area, this study delineated four first- and four second-order prospecting target areas. According to comprehensive analysis, most of the known gold deposits or gold ore occurrences fall into the prediction blocks of classes A and B and the prediction blocks of class C lie around the prediction blocks of classes A or B. This analytical result is consistent with the gradual changes of the metallogenic belt from the center to the edges. Gold deposits or ore occurrences have been discovered in all the delineated first-order prospecting target areas, and the posterior probabilities have a high average. Therefore, first-order prospecting target areas have great gold prospecting potential.

Key wordsMRAS    weight of evidence model    gold deposit    metallogenic prediction    Laowan area,Henan Province
收稿日期: 2021-06-11      修回日期: 2021-08-26      出版日期: 2022-06-20
ZTFLH:  P632  
基金资助:河南省财政地质勘查项目(2020[18]-13)
通讯作者: 陈建立
作者简介: 魏从玲(1979- ),女,河南南阳人,硕士,高级工程师,主要从事地质勘查及研究工作。Email: weicongling@126.com
引用本文:   
魏从玲, 陈建立, 郭鹏. 基于MRAS证据权重模型的河南老湾地区金矿成矿预测[J]. 物探与化探, 2022, 46(3): 653-660.
WEI Cong-Ling, CHEN Jian-Li, GUO Peng. Metallogenic prediction of gold deposits in Laowan area, Henan Province using the weight of evidence model and MRAS. Geophysical and Geochemical Exploration, 2022, 46(3): 653-660.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1337      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I3/653
Fig.1  老湾地区金矿带区域地质简图[15]
Fig.2  老湾地区金矿成矿预测变量示意
预测变量 P1 P2 P3 P4
地层 1.000 000 0.042 279 0.000 000 0.957 720
韧性剪切域 0.857 142 0.022 780 0.142 857 0.977 219
脆性断束50 m缓冲区 0.571 428 0.010 408 0.428 571 0.989 591
岩浆岩150 m缓冲区 0.500 000 0.093 743 0.500 000 0.906 256
与Au有关的蚀变带 0.285 714 0.009 333 0.714 285 0.990 666
Au异常 0.928 571 0.143 670 0.071 428 0.856 329
As异常 0.785 714 0.214 160 0.214 285 0.785 839
Sb异常 0.642 857 0.197 109 0.357 142 0.802 890
Ag异常 0.785 714 0.244 137 0.214 285 0.755 862
Table 1  研究区各预测变量先验概率统计结果
预测变量 W+ W- C W+方差 W-方差 C值排序
地层 3.163 443 0.000 000 3.163 443 0.071 701 0.000 012 5
韧性剪切域 3.627 708 -1.922 866 5.550 574 0.083 840 0.500 011 1
脆性断束50 m缓冲区 4.005 541 -0.836 835 4.842 376 0.126 109 0.166 678 2
岩浆岩150 m缓冲区 1.674 045 -0.594 714 2.268 759 0.142 980 0.142 869 7
与Au有关的蚀变带 3.421 337 -0.327 094 3.748 431 0.251 237 0.100 011 4
Au异常 1.866 123 -2.483 957 4.350 080 0.077 003 1.000 013 3
As异常 1.299 868 -1.299 442 2.599 310 0.090 963 0.333 348 6
Sb异常 1.182 161 -0.810 082 1.992 243 0.111 169 0.200 014 9
Ag异常 1.168 861 -1.260 549 2.429 410 0.090 956 0.333 348 8
Table 2  研究区各预测变量证据权重值统计结果
预测变量 地层 韧性剪
切域
脆性断束
50 m缓冲区
岩浆岩150 m
缓冲区
与Au有关
的蚀变带
Au异常 As异常 Sb异常 Ag异常
地层
韧性剪切域 -40.25独立
脆性断束50 m缓冲区 -34.55独立 -30.20独立
岩浆岩150 m缓冲区 -15.58独立 -20.94独立 -12.81独立
与Au有关的蚀变带 -37.23独立 -37.30独立 -32.38独立 -12.52独立
Au异常 -37.11独立 -43.73独立 -56.12独立 -40.98独立 -18.59独立
As异常 -36.82独立 -35.25独立 -29.49独立 -37.91独立 -27.72独立 -9.16独立
Sb异常 -43.77独立 -53.54独立 -49.74独立 -34.05独立 -29.33独立 -18.82独立 -19.80独立
Ag异常 -38.82独立 -35.34独立 -21.08独立 -16.02独立 -14.72独立 -19.54独立 -10.75独立 -15.30独立
Table 3  研究区各预测变量独立性检验结果
Fig.3  后验概率累积频率
Fig.4  预测单元后验概率分布
Fig.5  老湾地区金矿成矿预测
编号 后验概率最大值 后验概率平均值 面积/km2 已发现矿床点数
1 0.999997 0.860023 7.17 4
2 0.999997 0.852098 2.79 2
3 0.999997 0.876286 3.47 2
4 0.999868 0.874190 1.47 1
1 0.996198 0.773105 0.80 1
2 0.99997 0.624653 0.96 2
3 0.999965 0.781311 1.24 0
4 0.997268 0.598727 1.22 1
Table 4  老湾地区金矿找矿远景区
[1] 张璟, 李守义, 许山, 等. 基于MRAS证据权重法的辽西锦州——阜新金矿化带潜力评价[J]. 中南大学学报:自然科学版, 2012, 43(9):3565-3574.
[1] Zhang J, Li S Y, Xu S, et al. Potential gold evaluation with weighting of evidence based on MRAS in Jinzhou-Fuxin gold metallogenic belt, western Liaoning Province, China[J]. Journal of Central South University: Natural Science Edition, 2012, 43(9): 3565-3574.
[2] 肖克炎, 张晓华, 王四龙, 等. 矿产资源GIS评价系统[M]. 北京: 地质出版社, 2000:21-30.
[2] Xiao K Y, Zhang X H, Wang S L, et al. The system of MRAS for mineral resources integration assessment[M]. Benjing: Geological Publishing House, 2000:21-30.
[3] 娄德波, 肖克炎, 丁建华, 等. 矿产资源评价系统(MRAS)在全国矿产资源潜力评价中的应用[J]. 地质通报, 2010, 29(11):1677-1684.
[3] Lou D B, Xiao K Y, Ding J H, et al. Application of MRAS in national mineral resource potential assessment[J]. Geological Bulletin of China, 2010, 29(11): 1677-1684.
[4] 吴传军, 许德如, 郭涛, 等. 基于证据权重法的海南岛金多金属矿成矿预测研究[J]. 地质力学学报, 2014, 20(1):1-15.
[4] Wu C J, Xu D R, Guo T, et al. Study on metallogenic prognosis for gold polymetallic deposits in Hainan island based on evidence weighting method[J]. Journal of Geomechanics, 2014, 20(1): 1-15.
[5] 孔旭, 密文天, 莫雄, 等. 基于MRAS证据权重法的湖南怀化地区金矿成矿预测[J]. 物探与化探, 2016, 40(3):467-474.
[5] Kong X, Mi W T, Mo X, et al. Metallogenic prediction of gold deposits with weighting of evidence based on MRAS in Huaihua area, Hunan Province[J]. Geophysical and Geochemical Exploration, 2016, 40(3): 467-474.
[6] 田九玲. 基于证据权模型的赤峰——呼伦贝尔成矿带找矿预测[J]. 金属矿山, 2020(9):167-172.
[6] Tian J L. Prospecting prediction of Chifeng-Hulunbeier metallogenic belt based on weight of evidence model[J]. Metal Mine, 2020(9): 167-172.
[7] 姚志宏, 孙鹏慧, 刘长纯, 等. 基于MRAS的鞍山——本溪地区铁矿资源潜力分析[J]. 金属矿山, 2014(1):84-87.
[7] Yao Z H, Sun P H, Liu C C, et al. Analysis on the iron resource potential in Anshan-Benxi area based on MRAS[J]. Metal Mine, 2014(1): 84-87.
[8] 孔旭, 密文天, 辛杰, 等. 基于证据权重法的雪峰山中段金矿矿集区找矿远景预测[J]. 物探化探计算技术, 2019, 41(6):832-842.
[8] Kong X, Mi W T, Xin J, et al. The gold metallogenic prognosis based on the weighting method of evidence in the middle Xuefeng mountain area[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019, 41(6): 832-842.
[9] 李晓翠, 刘武生, 贾立城, 等. 巴音戈壁盆地塔木素地区砂岩型铀矿预测及找矿方向[J]. 东华理工大学学报:自然科学版, 2014, 37(2):158-163.
[9] Li X C, Liu W S, Jia L C, et al. Prognosis and prospecting direction of sandstone-type uranium deposit in Tamusu area, Bayingebi basin[J]. Journal of East China Institute of Technology:Nature Scicence, 2014, 37(2): 158-163.
[10] 李建国, 肖克炎, 李永顺, 等. 基于GIS和证据权重法的那仁宝力格地区铜多金属矿成矿预测[J]. 吉林大学学报:地球科学版, 2013, 43(4):1151-1158.
[10] Li J G, Xiao K Y, Li Y S, et al. Metallogenic prognosis of copper polymetallic mineral resources in Narenbaolige area on basis of weights of evidence method and GIS[J]. Journal of Jilin University:Earth Science Edition, 2013, 43(4): 1151-1158.
[11] 谢巧勤, 徐晓春, 岳书仓. 河南桐柏老湾金矿床氢氧氦同位素地球化学及成矿流体来源[J]. 地质科学, 2001, 36(1):36-42.
[11] Xie Q Q, Xu X C, Yue S C. Isotopic geochemistry of hydrogen, oxygen and helium, and ore-forming fluid sources of Laowan gold deposit in Tongbai, Henan Province[J]. Chinese Journal of Geology, 2001, 36(1): 36-42.
[12] 张宗恒, 方国松, 侯海燕, 等. 河南桐柏老湾金矿床地质特征及成因探讨[J]. 黄金地质, 2002, 8(3):20-26.
[12] Zhang Z H, Fang G S, Hou H Y, et al. Geological features and genesis of the Laowan gold deposit in the Tongbai region,Henan[J]. Gold Geology, 2002, 8(3): 20-26.
[13] 刘文灿, 杜建国, 张达, 等. 北淮阳构造带老湾金矿区构造与成矿作用的关系[J]. 现代地质, 2003, 17(1):8-13.
[13] Liu W C, Du J G, Zhang D, et al. The relationship between structures and mineralization of Laowan gold minning area in Northern Huaiyang tectonic belt[J]. Geoscience, 2003, 17(1): 8-13.
[14] 陈良, 戴立军, 王铁军, 等. 河南省老湾金矿床地球化学特征及矿床成因[J]. 现代地质, 2009, 23(2):277-284.
[14] Chen L, Dai L J, Wang T J, et al. Geochemical characteristics and genesis of the Laowan gold deposit in Henan Province[J]. Geoscience, 2009, 23(2): 277-284.
[15] 陈建立. 桐柏老湾金矿带成矿构造体系演化研究及其地质意义[J]. 地质矿找矿论丛, 2019, 34(1):36-46.
[15] Chen J L. The study on the evolution of metallogenic tectonic system and its significance of Laowan gold metallogenic belt in Tongbai county[J]. Contributions to Geology and Mineral Resources Research, 2019, 34(1): 36-46.
[16] 陈建立. 老湾花岗岩体与金成矿关系新认识及其找矿意义[J]. 地质找矿论丛, 2018, 33(3):351-359.
[16] Chen J L. New understanding of the Laowan granite body-Au mineralization relation and the significance to ore-search breakthrough[J]. Contributions to Geology and Mineral Resources Research, 2018, 33(3): 351-359.
[17] 杨梅珍, 付晶晶, 王世峰, 等. 桐柏山老湾金矿带右行走滑断裂控矿体系的构建及其意义[J]. 大地构造与成矿学, 2014, 38(1):94-107.
[17] Yang M Z, Fu J J, Wang S F, et al. Establishment and significance of dextral strike-slip fault ore-controlling system of the Laowan gold belt, Tongbai mountains[J]. Geotectonica et Metallogenia, 2014, 38(1): 94-107.
[18] 刘翼飞, 江思宏, 方东会, 等. 河南桐柏老湾花岗岩体锆石SHRIMP U-Pb年龄及其地质意义[J]. 岩石矿物学杂志, 2008, 27(6):519-523.
[18] Liu Y F, Jiang S H, Fang D H, et al. Zircon SHRIMP U-Pb dating of Laowan granite in Tongbai area, Henan Province, and its geological implications[J]. Acta Petrologica et Mineralogica, 2008, 27(6): 519-523.
[19] 陈建立, 郭鹏, 魏从玲, 等. 桐柏地区金银多金属矿集区找矿前景预测研究报告[R]. 河南省地质矿产勘查开发局第一地质勘查院, 2017.
[19] Chen J L, Guo P, Wei C L, et al. The prediction and research report of prospecting potential in gold silver polymetallic ore concentration area, Tongbai[R]. The First Geological Exploration Institute of Henan Provincial Bureau of Geo-exploration and Mineral Development, 2017.
[20] 张宏飞, 张利, 高山, 等. 桐柏地区变质杂岩和侵入岩类Pb同位素组成特征及其地质意义[J]. 地球科学:中国地质大学学报, 1999, 24(3):269-273.
[20] Zhang H F, Zhang L, Gao S, et al. Pb isotopic compositions of metamorphic rocks and intrusive rocks in Tongbai region and their geological implication[J]. Earth Science:Journal of China University of Geosciences, 1999, 24(3): 269-273.
[21] 杨梅珍, 陆建培, 付静静, 等. 桐柏山老湾金矿带与燕山期岩浆作用有关的岩浆热液金多金属矿床成矿作用——来自地球化学、年代学证据及控矿构造地质约束[J]. 矿床地质, 2014, 33(3):651-666.
[21] Yang M Z, Lu J P, Fu J J, et al. Magmatic hydrothermal gold and polymetallic metallogenesis related to Yanshanian magmatism of Laowan gold belt, Tongbai Mountain:Evidence from geochemistry, geochronology and ore-controlling structural geological constraints[J]. Mineral Deposits, 2014, 33(3): 651-666.
[22] 马成玉, 王洪恩. 老湾花岗岩及成矿物质与岩浆岩的同源性研究[J]. 现代矿业, 2012(10):54-55,85.
[22] Ma C Y, Wang H E. The research of homology of Laowan granite, metallogenic material and magmatic rock[J]. Morden Mining, 2012(10): 54-55, 85.
[23] 谢巧勤, 潘成荣, 徐晓春, 等. 河南老湾金矿床流体包裹体及稀土元素地球化学研究[J]. 合肥工业大学学报:自然科学版, 2003, 26(1):47-52.
[23] Xie Q Q, Pan C R, Xu X C, et al. Geochemistry of fluid inclusions and rare earth elements from Lanwan gold deposit in Henan Province[J]. Journal of Hefei University of Technology: Nature Scicence Edition, 2003, 26(1): 47-52.
[24] 滕浪, 陈建立, 陈守余. 北秦岭老湾金矿带变质岩原岩恢复及其形成过程[J]. 地质找矿论丛, 2019, 34(3):406-415.
[24] Teng L, Chen J L, Chen S Y. Restoration and formation process of metamorphic rocks in the Laowan gold ore belt, North Qinling[J]. Contributions to Geology and Mineral Resources Research, 2019, 34(3): 406-415.
[25] 陈建立, 郭鹏, 陈英男, 等. 豫西南老湾金矿原生晕地球化学特征及深部成矿预测[J]. 金属矿山, 2019(7):124-134.
[25] Chen J L, Guo P, Chen Y N, et al. Geochemical characteristics of primary halo and deep metallogenic prediction of Laowan gold deposit in Southwestern Henan Province[J]. Metal Mine, 2019(7): 124-134.
[26] 薛顺荣, 肖克炎, 丁建华. 基于MRAS的证据权重法在香格里拉地区的综合信息成矿预测[J]. 吉林大学学报:地球科学版, 2008, 38(5):738-744.
[26] Xue S R, Xiao K Y, Ding J H. Multi-source information metallogenic prognosis with weighting of evidence based on MRAS in Shangri-La[J]. Journal of Jilin University:Earth Science Edition, 2008, 38(5): 738-744.
[27] 王长兵. 基于GIS的呼伦贝尔白井山地区铅锌矿综合信息预测[D]. 长春: 吉林大学, 2014.
[27] Wang C B. Synthetic information prediction of lead-zinc deposit in Baijingshan area of Hulun Buir based on GIS[D]. Changchun: Jilin University, 2014.
[28] 陈建立, 陈金铎, 魏从玲, 等. 河南省桐柏县老湾金矿深部及外围普查报告[R]. 河南省地质矿产勘查开发局第一地质勘查院, 2020.
[28] Chen J L, Chen J D, Wei C L, et al. Deep and external prospecting report on the Laowan gold deposit in Tongbai County, Henan Province[R]. The First Geological Exploration Institute of Henan Provincial Bureau of Geo-exploration and Mineral Development, 2020.
[29] 李惠, 张国义, 禹斌, 等. 构造叠加晕法是危机金矿山寻找接替资源的有效新方法[J]. 矿产与地质, 2005, 19(6):683-687.
[29] Li H, Zhang G Y, Yu B, et al. Method of structural overprinting geochemical halo, a new and effective approach to prospecting for succeeding resources in gold deposits with resources crisis[J]. Mineral Resources and Geology, 2005, 19(6): 683-687.
[30] 邓勇, 邱瑞山, 罗鑫. 基于证据权重法的成矿预测——以广东省钨锡矿的成矿预测为例[J]. 地质通报, 2007, 26(9):1228-1234.
[30] Deng Y, Qiu R S, Luo X. Minerogenetic prediction based on the weight-of-evidence approach: A case study of the prediction of tungsten and tin deposits in Guangdong, China[J]. Geological Bulletin of China, 2007, 26(9): 1228-1234.
[31] 李新中, 赵鹏大, 肖克炎, 等. 矿床统计预测单元划分的方法与程序[J]. 矿床地质, 1998, 17(4):369-375.
[31] Li X Z, Zhao P D, Xiao K Y, et al. The method and program for the unit partition in the statistical prediction of mineral deposits[J]. Mineral Deposits, 1998, 17(4): 369-375.
[1] 万卫, 汪明启, 程志中, 范会虎, 左立波, 李俊辉. CO2、SO2气体地球化学测量方法在森林覆盖区找矿的试验研究[J]. 物探与化探, 2023, 47(5): 1137-1146.
[2] 袁玉婷, 刘雪敏, 王学求, 谭亲平. 硫、铅同位素对地表土壤微细粒金属全量测量异常的示踪——以水银洞卡林型隐伏金矿体为例[J]. 物探与化探, 2023, 47(4): 1083-1097.
[3] 邰文星, 杨成富, 靳晓野, 邵云彬, 刘光富, 赵平, 王泽鹏, 谭礼金. 多维度化探异常研究在黔西南者相金矿床深部成矿预测中的应用[J]. 物探与化探, 2023, 47(4): 856-867.
[4] 陈伟, 谭友, 曹正端, 廖志权, 张宁发, 傅海晖. 构造原生晕在攻深找盲中的应用——以赣南银坑牛形坝铅锌金银矿床为例[J]. 物探与化探, 2023, 47(4): 892-905.
[5] 魏振宏, 赵吉昌, 曲正钢, 樊新祥, 李省晔, 陈海云, 刘永彪, 杨镇熙. 浅钻地球化学测量在甘肃北山南金山金矿外围浅覆盖区的应用[J]. 物探与化探, 2023, 47(2): 331-342.
[6] 侯振广, 袁兆宪. 原生晕中元素及元素组合空间变化性研究——以青海省扎家同哪金矿为例[J]. 物探与化探, 2022, 46(4): 798-807.
[7] 冯军, 蒋文, 张征. 西北某石英脉型金矿综合物探特征及定量解释实例[J]. 物探与化探, 2022, 46(3): 661-667.
[8] 李忠平, 郝风云, 吴鸿飞, 张瑞芳, 朱昭明, 贾全山, 刘双. 时间域激电测深不同装置数据去耦分析[J]. 物探与化探, 2022, 46(3): 722-728.
[9] 陈海龙, 肖其鹏, 徐质彬, 杨海燕, 梁巨宏, 尹大改. 烃汞叠加晕找矿法在湖南沃溪金矿红岩溪矿段勘查中的应用及工程验证[J]. 物探与化探, 2022, 46(2): 323-336.
[10] 史琪, 赵延朋, 迟占东, 葛华, 康铁锁, 李发兴, 魏翔宇, 卢见昆, 杨人毅. 老挝川圹省约俄锡多金属矿区沟系土壤地球化学特征及成矿预测[J]. 物探与化探, 2021, 45(4): 824-834.
[11] 张亮亮, 朱立新, 马生明, 林少一, 戴长国, 周明岭, 霍光, 徐忠华, 席明杰, 张涛. 胶东海域金矿床元素富集贫化特征及深部预测[J]. 物探与化探, 2021, 45(4): 835-845.
[12] 赵吉昌, 范应, 雷一兰, 姚宾宾. 构造地球化学岩屑测量在甘肃党河南山地区找金中的应用[J]. 物探与化探, 2021, 45(4): 923-932.
[13] 朱丽芬, 骆检兰, 鲁江, 王欢欢, 刘汉军. 酶提取法在万古金矿区试点研究[J]. 物探与化探, 2021, 45(3): 669-678.
[14] 陈海龙, 肖其鹏, 梁巨宏. 湖南沃溪金矿区及其外围烃汞叠加晕找矿方法的应用效果[J]. 物探与化探, 2021, 45(2): 266-280.
[15] 袁兆宪, 侯振广, 任志栋, 刘永乐, 张大明, 张建平. 金属元素形成原生晕能力定量评价——以青海省扎家同哪金矿为例[J]. 物探与化探, 2021, 45(2): 292-300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com