Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (4): 1083-1097    DOI: 10.11720/wtyht.2023.1215
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
硫、铅同位素对地表土壤微细粒金属全量测量异常的示踪——以水银洞卡林型隐伏金矿体为例
袁玉婷1(), 刘雪敏1(), 王学求2, 谭亲平3
1.成都理工大学 地学核技术四川省重点实验室,四川 成都 610059
2.中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
3.中国科学院地球化学研究所 矿床地球化学国家重点实验室,贵州 贵阳 550081
Sulfur-lead isotopes based tracing of the metal element anomalies identified in the total metal measurement of surface fine-grained soils: A case study of the Shuiyindong Carlin-type concealed gold deposit
YUAN Yu-Ting1(), LIU Xue-Min1(), WANG Xue-Qiu2, TAN Qin-Ping3
1. Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, China
2. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
3. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
全文: PDF(3809 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在覆盖区寻找隐伏矿床是解决目前资源困境的重要途径之一。国内外所发展的深穿透地球化学方法对已知隐伏矿床开展了大量试验研究,取得了较好的效果。由于无法确定地表金属元素异常是否直接来自深部矿体,使上述方法未在未知覆盖区开展广泛的找矿工作,因此急需发展地表异常示踪技术。贵州水银洞金矿是我国超大型全隐伏的卡林型金矿床,成矿流体富含S、Au、As、Sb、Hg等元素。本文以该矿床为研究对象,采集地表微细粒土壤样品,分析5种微量元素(Au、As、Cu、Sb、Hg)的含量,以验证微细粒土壤全量测量技术在该矿床的找矿效果,并用S、Pb同位素识别地表土壤异常来源。研究发现:①微细粒土壤测量技术在该矿区的指示效果好,Au-As-Sb-Hg高异常区与隐伏矿体和断层的分布较为吻合,其中Hg对隐伏矿体的指示效果最好;②隐伏矿体及断层上方土壤中δ34S值、放射成因的w(207Pb)/w(204Pb)和w(206Pb)/w(204Pb)显著高于围岩区土壤,可有效示踪地表微细粒土壤中的异常来自于深部的隐伏矿体。该研究为在同类型覆盖区用微细粒土壤全量测量技术寻找隐伏卡林型金矿提供了理论依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁玉婷
刘雪敏
王学求
谭亲平
关键词 硫、铅同位素土壤微细粒全量测量异常源示踪水银洞金矿    
Abstract

Exploring concealed deposits in covered areas is an important way to solve the current resource dilemma. Extensive experimental studies using the deep-penetration geochemical methods developed at home and abroad have been conducted targeting some known concealed deposits, yielding satisfactory results. However, these methods have yet to be widely employed for prospecting in unknown covered areas due to the failure in determining whether surface metal element anomalies are directly from deep ore bodies. Accordingly, it is urgent to develop a tracing technique for surface anomalies. The Shuiyindong gold deposit in Guizhou Province is a super-large fully-concealed Carlin-type gold deposit in China, and its ore-forming fluids are rich in elements such as S, Au, As, Sb, and Hg. This study sampled surface fine-grained soils in the Shuiyindong gold deposit for the concentration analysis of five trace elements (Au, As, Cu, Sb, and Hg), verifying the prospecting effect of the total metal measurement technique of fine-grained soils in this deposit. Moreover, the source of surface soil anomalies was identified using sulfur (S) and lead (Pb) isotopes. This study found that: ① The total metal measurement technique of fine-grained soils showed encouraging indicative effects, with the high Au-As-Sb-Hg anomalies obtained roughly consistent with the distribution of concealed ore bodies and faults, and Hg exhibited the best indication effect on concealed ore bodies. ② The δ34S values and the ratios of radiogenic w(207Pb)/w(204Pb) and w(206Pb)/w(204Pb) in the soil above concealed ore bodies and faults were significantly higher than those in the soil of the surrounding rock area, effectively indicating that the anomalies in the surface fine-grained soils were from deep concealed ore bodies. This study provides a theoretical basis for exploring concealed Carlin-type gold deposits in the same type of covered areas using the total metal measurement technique of fine-grained soils.

Key wordssulfur and lead isotopes    total metal measurement of fine-grained soils    anomaly source tracing    Shuiyindong gold deposit
收稿日期: 2022-04-24      修回日期: 2022-10-19      出版日期: 2023-08-20
ZTFLH:  P632  
基金资助:国家重点研发计划项目“覆盖区地球化学异常源示踪与判别”(2016YFC0600604)
通讯作者: 刘雪敏(1987-),女,博士,主要从事勘查地球化学与矿床地球化学研究工作。Email:451245437@qq.com
作者简介: 袁玉婷(1998-),女,硕士,2021年毕业于成都理工大学地球化学专业,主要从事穿透性地球化学勘查技术学习与研究工作。Email:578631493@qq.com
引用本文:   
袁玉婷, 刘雪敏, 王学求, 谭亲平. 硫、铅同位素对地表土壤微细粒金属全量测量异常的示踪——以水银洞卡林型隐伏金矿体为例[J]. 物探与化探, 2023, 47(4): 1083-1097.
YUAN Yu-Ting, LIU Xue-Min, WANG Xue-Qiu, TAN Qin-Ping. Sulfur-lead isotopes based tracing of the metal element anomalies identified in the total metal measurement of surface fine-grained soils: A case study of the Shuiyindong Carlin-type concealed gold deposit. Geophysical and Geochemical Exploration, 2023, 47(4): 1083-1097.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1215      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I4/1083
Fig.1  水银洞卡林型金矿地质简图(修改自文献[20])
1—永宁镇组;2—长兴至大隆组;3—夜郎组;4—龙潭组;5—逆断层及其编号;6—正断层及其编号;7—性质不明断层及其编号;8—灰家堡背斜;9—矿段;10—A-B剖面线
Fig.2  水银洞卡林型金矿纳秧矿段剖面地质图(剖面A-B位置见图1)
1—夜郎组第三段;2—夜郎组第二段;3—夜郎组第一段;4—大隆组;5—长兴组;6—龙潭组第三段;7—龙潭组第二段;8—龙潭组第一段;9—构造蚀变体;10—茅口组;11—钻孔;12—断层;13—矿体
Fig.3  水银洞卡林型金矿纳秧段采样点分布
(奥维互动地图投影)
检测项目 检测依据 检测仪器 标准样品
Au DZ/T 0279.4
—2016
XSERIES2电感
耦合等离子
体质谱仪
GAu-9、
GAu-11
Cu GB/T 14506.30
—2010
GSS-19、
GSS-23
As、Sb DZ/T 0279.13
—2016
AFS-8330双道
原子荧光
光度计
Hg NY/T 1121.10
—2006
S同位素 DZ/T 0184.15—
1997
Deltavplus气体
同位素质谱计
IAEA-SO-5、
IAEA-SO-6、
NBS-127
Pb同位素 DZ/T 0184.12—
1997
Phoenix热表面
电离质谱仪
NBS981
Table 1  各元素分析的检测方法依据、主要检测仪器和标样信息
元素 位置 最小值 中位数 最大值 算术平均值 几何平均值 标准偏差 变异系数/%
Au 总矿段 0.93 2.61 5.55 2.84 2.60 1.24 44
围岩区上方 0.93 2.20 3.15 2.21 2.11 0.67 30
矿体上方 1.80 3.81 5.55 3.79 3.56 1.33 35
矿体/围岩区上方 1.73 1.71 1.69
Cu 总矿段 31.96 74.66 103.00 72.29 69.07 19.91 28
围岩区上方 58.87 82.47 103.00 80.46 79.18 14.70 18
矿体上方 31.96 69.25 85.06 60.04 56.27 21.22 35
矿体/围岩区上方 0.84 0.75 0.71
As 总矿段 8.10 49.21 325.09 83.13 49.54 93.21 112
围岩区上方 8.10 29.01 224.00 47.94 30.28 59.53 124
矿体上方 42.46 84.32 325.09 135.92 103.63 112.71 83
矿体/围岩区上方 2.91 2.84 3.42
Sb 总矿段 0.75 11.41 98.90 16.94 7.78 23.30 138
围岩区上方 0.75 2.91 50.27 10.13 4.20 15.25 151
矿体上方 11.33 14.84 98.90 27.15 19.60 30.15 111
矿体/围岩区上方 5.11 2.68 4.66
Hg 总矿段 0.217 1.157 11.884 2.483 1.247 3.372 136
围岩区上方 0.217 0.820 2.656 0.891 0.626 0.761 85
矿体上方 1.189 3.292 11.884 4.872 3.505 4.369 90
矿体/围岩区上方 4.01 5.47 5.60
Table 2  水银洞卡林型金矿纳秧段微细粒级土壤5种微量元素统计参数
元素 Cu As Sb Hg
Au -0.254 0.654** 0.477* 0.720**
Cu 0.018 0.004 -0.014
As 0.562** 0.890**
Sb 0.577**
Table 3  水银洞卡林型金矿纳秧段微细粒土壤5种微量元素相关性分析
Fig.4  水银洞卡林型金矿纳秧段微细粒土壤5种微量元素的剖面变化折线
硫、铅同位素组成 最小值 中位数 最大值 算术平均值 几何平均值 标准偏差 变异系数/%
δ34S/‰ 总矿段 -3.2 4.6 12.5 4.2 3.8 89.5
围岩区上方 -3.2 1.7 6.2 2.0 2.6 130.9
矿体上方 4.5 7.5 12.5 7.5 7.2 2.6 34.6
矿体/围岩区上方 4.5 3.8
w(206Pb)/
w(204Pb)
总矿段 18.860 19.904 21.438 19.969 19.951 0.869 4.35
围岩区上方 18.860 19.176 20.692 19.398 19.391 0.573 2.95
矿体上方 20.220 20.850 21.438 20.826 20.823 0.368 1.77
矿体/围岩区上方 1.087 1.074 1.074
w(207Pb)/
w(204Pb)
总矿段 15.622 15.719 15.834 15.724 15.724 0.065 0.41
围岩区上方 15.622 15.685 15.779 15.684 15.684 0.049 0.31
矿体上方 15.740 15.784 15.834 15.783 15.783 0.031 0.20
矿体/围岩区上方 1.006 1.006 1.006
w(208Pb)/
w(204Pb)
总矿段 38.888 39.034 39.276 39.048 39.048 0.096 0.25
围岩区上方 39.011 39.095 39.276 39.100 39.100 0.082 0.21
矿体上方 38.888 38.962 39.046 38.969 38.969 0.050 0.13
矿体/围岩区上方 0.997 0.997 0.997
Table 4  水银洞卡林型金矿纳秧段土壤样品S、Pb同位素组成的统计参数
Fig.5  水银洞卡林型金矿纳秧段微细粒土壤S、Pb同位素组成的剖面变化折线
Table 5  水银洞卡林型金矿矿石、围岩样品的硫同位素数据
Fig.6  水银洞卡林型金矿区土壤、矿石、围岩的硫同位素组成
指标 As Sb Hg δ34S w(206Pb)/w(204Pb) w(207Pb)/w(204Pb) w(208Pb)/w(204Pb)
Au 0.653** 0.476* 0.719** 0.652** 0.711** 0.689** -0.438
As 0.562** 0.890** 0.359 0.503* 0.39 -0.417
Sb 0.578** 0.35 0.391 0.29 -0.316
Hg 0.464* 0.522* 0.406 -0.487*
δ34S 0.679** 0.655** -0.508*
w(206Pb)/w(204Pb) 0.966** -0.652**
w(207Pb)/w(204Pb) -0.595**
Table 6  水银洞卡林型金矿纳秧段微细粒土壤4种微量元素与硫、铅同位素的相关性分析
样品 w(206Pb)/
w(204Pb)
w(207Pb)/
w(204Pb)
w(208Pb)/
w(204Pb)
参考文献
IIe 18.361 15.56 38.452 [25]
IIf 18.383 15.642 38.729
IIIa 18.304 15.54 38.501
IIIb-1 18.452 15.532 38.332
IIIb-2 17.942 15.56 38.158
IIIb-3 18.145 15.551 38.382
SYD-11 18.648 15.612 38.712 [39]
SYD-3 18.213 15.628 38.496
SYD-20 18.459 15.608 38.508
分布范围 17.942~
18.648
15.532~
15.642
38.158~
38.729
平均值 18.323 15.581 38.474
Table 7  水银洞卡林型金矿矿石黄铁矿的铅同位素组成
Fig.7  水银洞卡林型金矿纳秧矿段地表土壤、矿石黄铁矿的w(207Pb)/w(204Pb)-w(206Pb)/w(204Pb)(a)、w(208Pb)/w(204Pb)-w(207Pb)/w(206Pb)(b)图解
[1] 龚敏. 非常规化探方法在地质勘查中的应用浅析[J]. 科技资讯, 2012(34):86-87.
[1] Gong M. Application of unconventional geochemical exploration methods in geological exploration[J]. Science and Technology Information, 2012(34):86-87.
[2] Kristiansson K, Malmqvist L. Evidence for nondiffusive transport of ${ }_{86}^{222} \mathrm{Rn}$ in the ground and a new physical model for the transport[J]. Geophysics, 1982, 47(10):1444-1452.
doi: 10.1190/1.1441293
[3] Clark J R. Enzyme-induced leaching of B-horizon soils for mineral exploration in areas of glacial overburden[J]. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 1993, 102:B19-B29.
[4] Mann A W, Birrell R D, Mann A T, et al. Application of the mobile metal ion technique to routine geochemical exploration[J]. Journal of Geochemical Exploration, 1998, 61(1/13):87-102.
doi: 10.1016/S0375-6742(97)00037-X
[5] Wang X Q. Leaching of mobile forms of metals in overburden:Development and application[J]. Journal of Geochemical Exploration, 1998, 61(1/3):39-55.
doi: 10.1016/S0375-6742(97)00039-3
[6] Antropova L V, Goldberg I S, Voroshilov N A, et al. New methods of regional exploration for blind mineralization: Application in the USSR[J]. Journal of Geochemical Exploration, 1992, 43(2):157-166.
doi: 10.1016/0375-6742(92)90004-R
[7] 谢学锦. 用新观念与新技术寻找巨型矿床[J]. 科学中国人, 1995(5):15-16.
[7] Xie X J. Searching for giant deposits with new ideas and new technologies[J]. Scientific Chinese, 1995(5):15-16.
[8] 王学求, 刘占元, 白金峰, 等. 深穿透地球化学对比研究两例[J]. 物探化探计算技术, 2005, 27(3):250-255,183.
[8] Wang X Q, Liu Z Y, Bai J F, et al. Deep-enetration geochemistry-comparison studies of two concealed deposis.[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2005, 27(3):250-255,183.
[9] 李建亭, 刘雪敏, 王学求, 等. 地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别[J]. 物探与化探, 2022, 46(1):32-45.
[9] Li J T, Liu X M, Wang X Q, et al. Tracing and identification of concealed Luoboling copper-molybdenum deposit in Fujian Province using trace elements and isotopes in fine-grained surface soils[J]. Geophysical and Geochemical Exploration, 2022, 46(1):32-45.
[10] 刘雪敏, 陈岳龙, 王学求. 深穿透地球化学异常源同位素识别研究:以新疆金窝子金矿床、内蒙古拜仁达坝—维拉斯托多金属矿床为例[J]. 现代地质, 2012, 26(5):1104-1116.
[10] Liu X M, Chen Y L, Wang X Q. Research on isotope identification for anomalous sources of deep-penetration geochemistry:Two cases of Jinwozi Au deposit,Xinjiang and Bairendaba-Weilasituo Polymetallic deposit,Inner Mongolia[J]. Geoscience, 2012, 26(5):1104-1116.
[11] 徐洋, 汪明启, 高玉岩, 等. 利用铅同位素研究山东邹平王家庄铜矿地气物质来源[J]. 物探与化探, 2014, 38(1):23-27.
[11] Xu Y, Wang M Q, Gao Y Y, et al. Tracing the source of geogas materiala with the lead isotope method in the Wangjiazhuang Copper Ore Deposit of Zouping,Shandong Province[J]. Geophysical and Geochemical Exploration, 2014, 38(1):23-27.
[12] R·W博伊尔. 金的地球化学及金矿床[M]. 北京: 地质出版社, 1984.
[12] Boyle R W. Gold geochemistry and gold deposits[M]. Beijing: Geological Publishing House, 1984.
[13] Radtke A S. Geology of the Carlin gold deposit, Nevada[G]// U.S.Geological Survey Professional Paper,Geological Survey(U.S.), 1985.
[14] 蒲含科. 板其金矿矿物岩石特征及矿床成因讨论[J]. 贵州地质, 1987(2):151-161.
[14] Pu H K. Mineral and rock charscteristics and ore genesis of Banqi gold ore[J]. Geology of Guizhou, 1987(2):151-161.
[15] 陈潭钧. 册亨板其金矿矿床地质特征及成因初探[J]. 贵州地质, 1986, 13(4):325-339.
[15] Chen T J. A preliminary discussion on geological features and origin of Banqi Au-ore deposit in Ceheng[J]. Geology of Guizhou, 1986, 13(4):325-339.
[16] 谭运金. 滇黔桂地区微细粒浸染型金矿床的矿床地球化学类型[J]. 矿床地质, 1994, 13(4):308-321.
[16] Tan Y J. Geochemical types of the micro-and fine-grained disseminated gold deposits in Yunnan-Guizhou-Guangxi region[J]. Mineral Deposits, 1994, 13(4):308-321.
[17] 刘建中, 邓一明, 邱林, 等. 中国第一个Ⅰ类型卡林型金矿床— —水银洞金矿地质[J]. 矿床地质, 2006, 25(S1):175-178.
[17] Liu J Z, Deng Y M, Qiu L, et al. Geological characteristic of the Shuiyindong gold deposit,the first Ⅰ-type Carlin-type gold deposit in China[J]. Mineral Deposits, 2006, 25(S1):175-178.
[18] 刘建中, 李建威, 周宗桂, 等. 贵州贞丰—普安金矿整装勘查区找矿与研究新进展[J]. 贵州地质, 2017, 34(4):244-254.
[18] Liu J Z, Li J W, Zhou Z G, et al. New progress of exploration and research of Zhenfeng-Puan gold fully equipped exploration area.[J]. Guizhou Geology, 2017, 34(4):244-254.
[19] 陈发恩, 刘建中, 杨成富, 等. 贵州省贞丰县水银洞超大型金矿床地质特征及构造控矿分析[J]. 贵州地质, 2019, 36(1):18-27.
[19] Chen F E, Liu J Z, Yang C F, et al. Geological characteristics and structural ore control analysis of Shuiyindong super large gold deposit in Zhenfeng County, Guizhou Province[J]. Guizhou Geology, 2019, 36(1):18-27.
[20] 谭亲平, 夏勇, 谢卓君, 等. 黔西南水银洞卡林型金矿构造地球化学及对隐伏矿找矿的指示[J]. 地球学报, 2020, 41(6):886-898.
[20] Tan Q P, Xia Y, Xie Z J, et al. Tectono-geochemistry and cocealed ores prospecting in the Shuiyindong gold deposit of Southwestern Guizhou[J]. Acta Geoscientica Sinica, 2020, 41(6):886-898.
[21] 林鲁军, 庞振山, 薛建玲, 等. 水银洞金矿矿床地质特征、成因及找矿标志[J]. 矿物学报, 2015, 35(S1):1017-1018.
[21] Lin L J, Pang Z S, Xue J L, et al. Geological characteristics, genesis and prospecting signs of the Shuiyindong gold deposit[J]. Acta Mineralogica Sinica, 2015, 35(S1):1017-1018.
[22] 齐少烽, 陈发恩, 冯琳, 等. 贵州省水银洞金矿地质特征及成因浅析[J]. 中国地质调查, 2015, 2(6):53-58.
[22] Qi S F, Chen F E, Feng L, et al. Geological characteristic and genesis of the Shuiyindong gold deposit,Guizhou[J]. Geological Survey of China, 2015, 2(6):53-58.
[23] 刘建中, 夏勇, 邓一明, 等. 贵州水银洞超大型金矿床金的赋存状态再研究[J]. 贵州地质, 2007, 24(3):165-169.
[23] Liu J Z, Xia Y, Deng Y M, et al. Restudy on modes of gold occurrence in the Shuiyindong super-large-sized gold deposit[J]. Guizhou Geology, 2007, 24(3):165-169.
[24] 谭亲平, 夏勇, 王学求, 等. 黔西南灰家堡金矿田成矿构造模式及构造地球化学研究[J]. 大地构造与成矿学, 2017, 41(2):291-304.
[24] Tan Q P, Xia Y, Wang X Q, et al. Tectonic model and tectonic-geochemistry characteristic of the Huijiabao gold orefield,SW Guizhou Province[J]. Geotectonica et Metallogenia, 2017, 41(2):291-304.
[25] 夏勇, 张瑜, 苏文超, 等. 黔西南水银洞层控超大型卡林型金矿床成矿模式及成矿预测研究[J]. 地质学报, 2009, 83(10):1473-1482.
[25] Xia Y, Zhang Y, Su W C, et al. Metallogenic model and prognosis of the Shuiyindong super-large stratabound carlin-type gold deposit,Sourthwestern Guizhou Province,China[J]. Acta Geologica Sinica, 2009, 83(10):1473-1482.
[26] 郭振春. 黔西南灰家堡金矿田“两层楼”模式及找矿意义[J]. 黄金地质, 2002, 8(4):18-23.
[26] Guo Z C. The two-stairs model of the Huijiapu gold field in south-western Guizhou and its prospecting significance[J]. Gold Geology, 2002, 8(4):18-23.
[27] 刘建中, 杨成富, 王泽鹏, 等. 贵州省贞丰县水银洞金矿床地质研究[J]. 中国地质调查, 2017, 4(2):32-41.
[27] Liu J Z, Yang C F, Wang Z P, et al. Geological research of Shuiyindong gold deposit in Zhenfeng Country,Guizhou Province[J]. Geological Survey of China, 2017, 4(2):32-41.
[28] 刘世川. 水银洞金矿成矿构造特征再认识与找矿思路[J]. 西部探矿工程, 2021, 33(1):88-91.
[28] Liu S C. Reunderstanding of metallogenic tectonic characteristics of Shuiyindong gold deposit and ideas for prospecting[J]. West-China Exploration Engineering, 2021, 33(1):88-91.
[29] 周正均. 水银洞金矿区矿床地质特征分析[J]. 世界有色金属, 2017, 483(15):117,119.
[29] Zhou Z J. Analysis of geological characteristic of gold deposit in mercury cave gold mine[J]. World Nonferrous Metals, 2017, 483(15):117,119.
[30] 王崇予. 贵州贞丰水银洞金矿床矿石矿相学特征[J]. 新疆有色金属, 2018, 41(5):58-59.
[30] Wang C Y. Mineral facies characteristics of ore deposits in Shuyindong gold deposit, Zhenfeng, Guizhou[J]. Xinjiang Nonferrous Metals, 2018, 41(5):58-59.
[31] 刘建中, 陈景河, 邓一明, 等. 贵州水银洞超大型金矿勘查实践及灰家堡矿集区勘查新进展[J]. 地质调查与研究, 2009, 32(2):138-143.
[31] Liu J Z, Chen J H, Deng Y M, et al. Exploration of the Shuiyindong super-scale gold deposit and the evolution of exploration for metallogenic belt of the Huijiabao Anticline in Guizhou Province[J]. Geological Survey and Research, 2009, 32(2):138-143.
[32] 苏信明. 太平洞金矿矿床成因及找矿标志[J]. 建材与装饰, 2016, 419(15):192-193.
[32] Su X M. Genesis and prospecting signs of Taipingdong gold deposit[J]. Construction Materials & Decoration, 2016, 419(15):192-193.
[33] 赵静, 梁金龙, 李军, 等. 贵州贞丰水银洞金矿矿床成因与成矿模式:来自载金黄铁矿NanoSIMS多元素Mapping及原位微区硫同位素的证据[J]. 地学前缘, 2018, 25(1):157-167.
doi: 10.13745/j.esf.yx.2018.01.011
[33] Zhao J, Liang J L, Li J, et al. Genesis and metallogenic model of the Shuiyindong gold deposit,Guizhou Province:Evidences from high-resolution multi-element mapping and in situ sulfur isotopes of Au-carrying pyrites by NanoSIMS[J]. Earth Science Frontiers, 2018, 25(1):157-167.
[34] 郑禄林, 杨瑞东, 刘建中, 等. 黔西南泥堡金矿床大型隐伏金矿体地质特征研究[J]. 地质与勘探, 2014, 50(4):689-699.
[34] Zheng L L, Yang R D, Liu J Z, et al. Geological features of a large concealed gold orebody in the Nibao gold deposit,Southwestern Guizhou Province[J]. Geology and Exploration, 2014, 50(4):689-699.
[35] 靳晓野. 黔西南泥堡、水银洞和丫他金矿床的成矿作用特征与矿床成因研究[D]. 武汉: 中国地质大学(武汉), 2017.
[35] Jin X Y. Geology,mineralization and genesis of the Nibao,Shuivindong and Yata gold deposits in SW Guizhou Province,China[D]. Wuhan: China University of Geosciences(Wuhan), 2017.
[36] 夏勇. 贵州贞丰县水银洞金矿床成矿特征和金的超常富集机制研究[D]. 贵阳: 中国科学院研究生院地球化学研究所, 2005.
[36] Xia Y. Characteristics and model for Shuiyindong gold deposit in southwestern Guizhou,China[D]. Guiyang: Institute of Geochemistry,Chinese Academy of Sciences Guiyang, China, 2005.
[37] 宋发治. 贵州水银洞金矿床地质特征及成因研究[D]. 成都: 成都理工大学, 2009.
[37] Song F Z. Geological characteristics and genesis of the Shuiyindong gold deposit,Guizhou,China[D]. Chengdu: Chengdu University of Technology, 2009.
[38] 谭代卫, 刘建中. 贵州水银洞金矿簸箕田1矿段940-1060 m标高地质与生产勘探的矿体特征分析[C]// 中国地球物理学会, 2021.
[38] Tan D W, Liu J Z. Analysis of the orebody characteristics of 940-1060 m elevation geology and production exploration in the 1st mining section of Fujitian,Shuiyindong Gold Mine,Guizhou[C]// Chinese Geophysical Society, 2021.
[39] 林鲁军. 贵州省贞丰县水银洞金矿床地质地球化学特征和成因[D]. 北京: 中国地质大学(北京), 2017.
[39] Lin L J. Geological and geochemical characteristics and genesis of the Shuiyindong gold deposit,Zhenfeng County,Guizhou Provmce[D]. Beijing: China University of Geosciences(Beijing), 2017.
[40] 成杭新, 李括, 李敏, 等. 中国城市土壤化学元素的背景值与基准值[J]. 地学前缘, 2014, 21(3):265-306.
doi: 10.13745/j.esf.2014.03.028
[40] Cheng H X, Li K, Li M, et al. Geochemical background and baseline value of chemical elements in urban soil in China[J]. Earth Science Frontiers, 2014, 21(3):265-306.
[41] 鲁美, 叶荣, 张必敏, 等. 覆盖区地球化学勘查进展[J]. 矿床地质, 2019, 38(6):1408-1411.
[41] Lu M, Ye R, Zhang B M, et al. Progress in geochemical exploration of covered areas[J]. Mineral Deposits, 2019, 38(6):1408-1411.
[42] 唐金荣, 吴传璧, 施俊法. 深穿透地球化学迁移机理与方法技术研究新进展[J]. 地质通报, 2007, 26(12):1579-1590.
[42] Tang J R, Wu C B, Shi J F. Recent progress in the study of the deep-penetrating geochemical migration mechanisms and methods[J]. Geological Bulletin of China, 2007, 26(12):1579-1590.
[43] 王学求, 刘占元, 叶荣, 等. 新疆金窝子矿区深穿透地球化学对比研究[J]. 物探与化探, 2003, 27(4):247-250,254.
[43] Wang X Q, Liu Z Y, Ye R, et al. Deep-penetrating geochemistry:A comparative study in the Jinwozi gold ore district,Xinjiang[J]. Geophysical and Geochemical Exploration, 2003, 27(4):247-250,254.
[44] 张必敏, 王学求, 贺灵, 等. 内蒙古半干旱草原区隐伏矿地球化学勘查方法试验[J]. 物探与化探, 2013, 37(5):804-810.
[44] Zhang B M, Wang X Q, He L, et al. Geochemical exploration for concealed deposits on semi-arid grasslands of Inner Mongolia[J]. Geophysical and Geochemical Exploration, 2013, 37(5):804-810.
[45] 刘汉粮, 王学求, 张必敏, 等. 沙泉子隐伏铜镍矿地球化学勘查方法试验[J]. 物探化探计算技术, 2014, 36(6):763-770.
[45] Liu H L, Wang X Q, Zhang B M, et al. Geochemical exploration for concealed Cu-Ni deposit,Shaquanzi,Xinjiang[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(6):763-770.
[46] 刘汉粮, 张必敏, 刘东盛, 等. 土壤微细粒全量测量在甘肃花牛山矿区的应用[J]. 物探与化探, 2016, 40(1):33-39.
[46] Liu H L, Zhang B M, Liu D S, et al. The application of soil geochemical measurement method to the Huaniushan Pb-Zn deposit,Gansu Province[J]. Geophysical and Geochemical Exploration, 2016, 40(1):33-39.
[47] 张必敏, 王学求, 叶荣, 等. 土壤微细粒分离测量技术在黄土覆盖区隐伏金矿勘查中的应用及异常成因探讨[J]. 桂林理工大学学报, 2019, 39(2):301-310.
[47] Zhang B M, Wang X Q, Ye R, et al. Fine-grained soil prospecting method for mineral exploration in loess covered areas and discussion on the origin of geochemical anomalies[J]. Journal of Guilin University of Technology, 2019, 39(2):301-310.
[48] 常华进, 储雪蕾, 黄晶, 等. 沉积环境细菌作用下的硫同位素分馏[J]. 地质论评, 2007, 53(6):807-813.
[48] Chang H J, Chu X L, H J, et al. Sulfur isotope fractionation accompanying bacterial action under sedimentary condition[J]. Geological Review, 2007, 53(6):807-813.
[49] Bin L, Shao Y J. Genesis of the giant Zijinshan epithermal Cu-Au and Luoboling porphyry Cu-Mo deposits in the Zijinshan ore district, Fujian Province, SE China: A multi-isotope and trace element investigation[J]. Ore Geology Reviews, 2017, 88:753-767.
doi: 10.1016/j.oregeorev.2017.02.009
[50] 陕亮, 郑有业, 许荣科, 等. 硫同位素示踪与热液成矿作用研究[J]. 地质与资源, 2009, 18(3):197-203.
[50] Shan L, Zheng Y Y, Xu R K, et al. Review on sulfur isotopic tracing and hydrothermal metallogenesis[J]. Geology and Resources, 2009, 18(3):197-203.
[51] 曾键年, 范永香, 林卫兵. 江西金山金矿床成矿物质来源的铅和硫同位素示踪[J]. 现代地质, 2002, 16(2):170-176.
[51] Zeng J N, Fan Y X, Lin W B. The lead and sulfur isotopic tracing of the source of ore-forming material in Jinshan gold deposit in Jiangxi Province[J]. Geoscience, 2002, 16(2):170-176.
[52] 席明杰, 马生明, 朱立新, 等. 硫同位素在地球化学异常成因研究中的应用[J]. 地质学报, 2009, 83(5):705-718.
[52] Xi M J, Ma S M, Zhu L X, et al. The application of sulfur isotope in the cause of geochemical abnormality[J]. Acta Geologica Sinica, 2009, 83(5):705-718.
[53] 唐龙飞, 谭泽模, 黄敦杰, 等. 大厂矿田硫同位素特征及找矿预测[J]. 有色金属:矿山部分, 2014, 66(6):30-35.
[53] Tang L F, Tan Z M, Huang D J, et al. Sulfur isotope characteristic and prospecting prediction of Dachang tinpolymetallic ore field[J]. Nonferrous Metals:Mining Section, 2014, 66(6):30-35.
[54] 王成辉, 王登红, 刘建中, 等. 贵州水银洞超大型卡林型金矿同位素地球化学特征[J]. 地学前缘, 2010, 17(2):396-403.
[54] Wang C H, Wang D H, Liu J Z, et al. Characteristics of isotope geochemistry of Shuiyindong super-large Carlin gold deposit in Guizhou[J]. Earth Science Frontiers, 2010, 17(2):396-403.
[55] 朱赖民, 金景福, 何明友, 等. 黔西南微细浸染型金矿床深部物质来源的同位素地球化学研究[J]. 长春科技大学学报, 1998, 28(1):39-44.
[55] Zhu L M, Jin J F, He M Y, et al. A study of isotopic geochemistry on plutonic material source for the fine-disseminated gold deposits in Southwestern Guizhou Province[J]. Journal of Changchun University of Science and Technology, 1998, 28(1):39-44.
[56] 刘建中, 邓一明, 刘川勤, 等. 贵州省贞丰县水银洞层控特大型金矿成矿条件与成矿模式[J]. 中国地质, 2006, 33(1):169-177.
[56] Liu J Z, Deng Y M, Liu C Q, et al. Metallogenic conditions and model of the superlarge Shuiyindong stratabound gold deposit in Zhenfeng County,Guizhou Province[J]. Geology in China, 2006, 33(1):169-177.
[57] 熊灿娟, 粟梅. 水银洞金矿区硫同位素地球化学研究[J]. 科技与创新, 2015(9):8-9.
[57] Xiong C J, Su M. Shuiyindong goldfields sulfur isotope geochemistry[J]. Science and Technology & Innovation, 2015(9):8-9.
[58] 王泽鹏, 夏勇, 宋谢炎, 等. 黔西南灰家堡卡林型金矿田硫铅同位素组成及成矿物质来源研究[J]. 矿物岩石地球化学通报, 2013, 32(6):746-752.
[58] Wang Z P, Xia Y, Song X Y, et al. Sulfur and lead isotopic composition of the Huijiabao carlin-type gold field and the ore-forming material sources in sources in southwest of Guizhou[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(6):746-752.
[59] 汪明启. 铅同位素地球化学勘查方法及其应用[J]. 地质地球化学, 1991(6):37-40,43.
[59] Wang M Q. Lead isotope geochemical prospecting method and its application[J]. Geogeochemistry, 1991(6):37-40,43.
[60] 汪明启, 高玉岩. 利用铅同位素研究金属矿床地气物质来源:甘肃蛟龙掌铅锌矿床研究实例[J]. 地球化学, 2007, 36(4):391-399.
[60] Wang M Q, Gao Y Y. Tracing source of geogas with lead isotopes:A case study in Jiaolongzhang Pb-Zn deposit,Gansu Province[J]. Geochemistry, 2007, 36(4):391-399.
[61] 李中兰, 崔学军, 刘红英, 等. 铅同位素方法在隐伏矿深度与资源量定量预测中的应用研究——以北祁连西段寒山金矿为例[J]. 大地构造与成矿学, 2007, 31(4):441-451.
[61] Li Z L, Cui X J, Liu H Y, et al. Application of Pb isotope for quantitative forecasting of blind ore deposits:A case study from the Hanshan gold deposit in the Northwestern Qilian Orogenic Belt[J]. Geotectonica et Metallogenia, 2007, 31(4):441-451.
[62] 崔学军, 李中兰, 朱炳泉, 等. 铅同位素在矿产资源评价中的应用——以甘肃省鹰嘴山金矿区为例[J]. 矿床地质, 2008, 27(1):88-100.
[62] Cui X J, Li Z L, Zhu B Q, et al. Application of Pb isotopes to evaluation of mineral resources:A case study of Yingzuishan gold deposit,Gansu Province[J]. Mineral Deposits, 2008, 27(1):88-100.
[63] Zhang X C, Spiro B, Halls C, et al. Sediment-hosted disseminated gold deposits in Southwest Guizhou, PRC:Their geological setting and origin in relation to mineralogical, fluid inclusion, and stable-isotope characteristics[J]. International Geology Review, 2003, 45(5):407-470.
doi: 10.2747/0020-6814.45.5.407
[64] Hu R Z, Su W C, Bi X W, et al. Geology and geochemistry of Carlin-type gold deposits in China[J]. Mineralium Deposita, 2002, 37(3):378-392.
doi: 10.1007/s00126-001-0242-7
[65] 刘建中, 夏勇, 张兴春, 等. 层控卡林型金矿床矿床模型——贵州水银洞超大型金矿[J]. 黄金科学技术, 2008, 16(3):1-5.
[65] Liu J Z, Xia Y, Zhang X C, et al. Model of strata karlin-type gold deposit:The shuiyindong super-scale gold deposit[J]. Gold Science and Technology, 2008, 16(3):1-5.
[66] Spycher N F, Reed M H. Evolution of a broadlands-type epithermal ore fluid along alternative P-T paths:Implications for the transport and deposition of base, precious, and volatile metals[J]. Economic Geology. 1989, 84(2):328-359.
doi: 10.2113/gsecongeo.84.2.328
[67] Wang X Q, Cheng Z Z, Lu Y X, et al. Nanoscale metals in earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains[J]. Journal of Geochemical Exploration, 1997, 58(1):63-72.
doi: 10.1016/S0375-6742(96)00052-0
[68] Wang X Q, Xie X J, Ye S Y, et al. Concepts for geochemical gold exploration based on the abundance and distribution of ultrafine gold[J]. Journal of Geochemical Exploration, 1995, 55(1/3):93-101.
doi: 10.1016/0375-6742(95)00026-7
[69] 苏航, 陈功新, 邢林啸, 等. 冀中坳陷典型地热田前缘晕元素特征及其对地热学意义[J]. 有色金属:矿山部分, 2021, 73(3):88-97.
[69] Su H, Chen G X, Xing L X, et al. Characteristics of the front halo elements of typical geothermal fields in Jizhong depression and their geothermal significance[J]. Nonferrous Metals:Mining Section, 2021, 73(3):88-97.
[70] 王小春. 微细浸染型金矿中As Sb Hg Ti Ba元素的找矿指示意义[J]. 矿产与地质, 1992, 6(4):307-312.
[70] Wang X C. Indicator signifcance of As,Sb,Hg,Ti and Ba for the micro-disseminated type gold deposits[J]. Mineral Resources and Geology, 1992, 6(4):307-312.
[71] Schuster E. The behavior of mercury in the soil with special emphasis on complexation and adsorption processes-A review of the literature[J]. Water, Air, and Soil Pollution, 1991, 56(1):667-680.
doi: 10.1007/BF00342308
[72] Yin Y J, Herbert E A, Huang P, et al. Adsorption/Desorption isotherms of Hg(II) by soil[J]. Soil Science, 1997, 162(1):35-45.
doi: 10.1097/00010694-199701000-00006
[73] Li R H, Wang X Q, Yang L Q, et al. The characteristic of microstructural deformation of gold bearing pyrite in Jiaodong:The links between nanoscale gold enrichment and crystal distortion[J]. Ore Geology Reviews, 2020, 122:103495
doi: 10.1016/j.oregeorev.2020.103495
[74] 韩志轩, 张必敏, 乔宇, 等. 隐伏铜矿区土壤微细粒测量有效性实验——以江西通江岭铜矿为例[J]. 地球学报, 2020, 41(6):977-986.
[74] Han Z X, Zhang B M, Qiao Y, et al. Validity experiments of fine-grained soil geochemical survey for exploring concealed copper deposits:A case study in the Tongjiangling copper deposit,Jiangxi Province[J]. Acta Geoscientica Sinica, 2020, 41(6):977-986.
[1] 万太平, 张丽, 刘汉粮. 黑龙江省额尔古纳地块战略性矿产锑区域地球化学特征及远景区预测[J]. 物探与化探, 2023, 47(5): 1179-1188.
[2] 王惠艳, 彭敏, 马宏宏, 张富贵. 贵州典型重金属高背景区耕地土壤重金属生态风险评价[J]. 物探与化探, 2023, 47(4): 1109-1117.
[3] 向文帅, 白洋, 姜军胜, 雷义均, HUNDIE Melka, SISAY Degu, 张元培, 吴颖, 郑雄伟. 地球化学块体法在埃塞俄比亚铜矿资源评价中的应用[J]. 物探与化探, 2023, 47(4): 845-855.
[4] 邰文星, 杨成富, 靳晓野, 邵云彬, 刘光富, 赵平, 王泽鹏, 谭礼金. 多维度化探异常研究在黔西南者相金矿床深部成矿预测中的应用[J]. 物探与化探, 2023, 47(4): 856-867.
[5] 杨星, 管育春, 邹滔, 李伟. 综合土壤和重砂测量在内蒙古扎鲁特旗坤得来扎拉格地区锡多金属找矿中的应用[J]. 物探与化探, 2023, 47(4): 868-880.
[6] 王永飞, 董之凯, 吕文祥, 李宝新, 马冰. 四川省510铀矿床中铀及伴生元素的分带特征[J]. 物探与化探, 2023, 47(4): 881-891.
[7] 陈伟, 谭友, 曹正端, 廖志权, 张宁发, 傅海晖. 构造原生晕在攻深找盲中的应用——以赣南银坑牛形坝铅锌金银矿床为例[J]. 物探与化探, 2023, 47(4): 892-905.
[8] 保善东, 谢祥镭, 王亚栋, 徐云甫, 张新远, 曾彪. 寒冷半干旱草原景观大比例尺微沟系测量样品粒级试验——以锲墨格山锂铍稀有矿为例[J]. 物探与化探, 2023, 47(3): 648-658.
[9] 张嘉升, 周伟, 李伟良, 祁晓鹏, 杨杰, 王璐. 陕西简池镇地区1∶2.5万水系沉积物测量地球化学特征及找矿潜力[J]. 物探与化探, 2023, 47(3): 659-669.
[10] 弓秋丽, 杨剑洲, 王振亮, 严慧. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834.
[11] 张洋洋, 陈岳龙, 李大鹏, 康欢, 房明亮, 徐云亮. 冀北隐伏火山热液型铀矿地表地球化学异常[J]. 物探与化探, 2023, 47(2): 300-308.
[12] 李俊俊, 魏宇, 张庆松, 王维华, 柳维, 向亮. 四川马头金矿区土壤地球化学测量异常特征及找矿模型[J]. 物探与化探, 2023, 47(2): 309-320.
[13] 魏振宏, 赵吉昌, 曲正钢, 樊新祥, 李省晔, 陈海云, 刘永彪, 杨镇熙. 浅钻地球化学测量在甘肃北山南金山金矿外围浅覆盖区的应用[J]. 物探与化探, 2023, 47(2): 331-342.
[14] 刘畅, 张参辉, 张鑫, 纵瑞. 河南灵宝董家埝银矿床流体包裹体特征及矿床成因[J]. 物探与化探, 2023, 47(2): 343-352.
[15] 陈熙, 安朝, 张文权, 徐云甫, 马瑛, 史连昌, 陶志华. 柴北缘中段地球化学特征及铬的成矿潜力评价[J]. 物探与化探, 2023, 47(2): 353-364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com