Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (3): 669-678    DOI: 10.11720/wtyht.2021.1090
  地质调查 本期目录 | 过刊浏览 | 高级检索 |
酶提取法在万古金矿区试点研究
朱丽芬(), 骆检兰, 鲁江, 王欢欢, 刘汉军
湖南省地球物理地球化学勘查院,湖南 长沙 410116
Pilot study on enzyme extraction method in Wangu gold mining area
ZHU Li-Fen(), LUO Jian-Lan, LU Jiang, WANG Huan-Huan, LIU Han-Jun
Hunan Institute of Geophysical and Geochemical Exploration,Changsha 410116,China
全文: PDF(2368 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为探讨适应我国南方潮湿环境的深穿透地球化学找矿方法,在酶提取方法基础上调整部分实验参数,形成了一套非晶质锰吸附解析法室内及室外操作流程。选择万古金矿区505号剖面开展方法有效性验证,与传统土壤王水溶矿测试、岩石测量等方法进行对比研究,结果显示,非晶质锰吸附解析法可以在隐伏矿上方有效地发现异常,-100目样品中浸出率呈现Cl>Br>I>Au>Ag>Sb>As的特征,且该方法检测出的Au、Sb异常敏锐度高于土壤全量测量,并与岩石测量异常契合度较高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱丽芬
骆检兰
鲁江
王欢欢
刘汉军
关键词 非晶质锰吸附解析法酶提取法隐伏矿万古金矿    
Abstract

In order to discuss the deep-penetrating geochemical ore prospecting method suitable for the humid environment in southern China, this paper adjusted some experimental parameters based on the enzyme leach method to form a set of indoor and outdoor operating procedures for the analysis of amorphous manganese adsorption. We chose to verify the effectiveness of the analytical method for the adsorption of amorphous manganese at the No. 505 geological prospecting line in the Wangu Gold Mine, and compared the results with the two methods of traditional soil full-scale testing and rock measurement methods. The comparison results show that the analysis method of amorphous manganese adsorption can effectively find geochemical anomalies above the concealed ore. The leaching rate of 100 mesh samples showed the characteristics of Cl>Br>I>Au>Ag>Sb>As.The anomalous sensitivity of Au and Sb detected by the amorphous manganese adsorption analytical method is higher than that of the soil total measurement, and it agrees well with the geochemical anomaly of rock measurement.

Key wordsamorphous manganese adsorption analysis    enzyme leach    hidden mine    Wangu gold mine
收稿日期: 2020-02-25      修回日期: 2021-01-22      出版日期: 2021-06-20
ZTFLH:  P595  
基金资助:湖南省科研计划项目
作者简介: 朱丽芬(1988-),女,2013年毕业于中国科学院大学,硕士研究生,主要从事勘查地球化学方面的研究工作。Email: 411523364@qq.com
引用本文:   
朱丽芬, 骆检兰, 鲁江, 王欢欢, 刘汉军. 酶提取法在万古金矿区试点研究[J]. 物探与化探, 2021, 45(3): 669-678.
ZHU Li-Fen, LUO Jian-Lan, LU Jiang, WANG Huan-Huan, LIU Han-Jun. Pilot study on enzyme extraction method in Wangu gold mining area. Geophysical and Geochemical Exploration, 2021, 45(3): 669-678.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1090      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I3/669
Fig.1  万古金矿区1:5万地球化学异常剖析
Fig.2  505号剖面线样品采集实际点位分布
Fig.3  非晶质锰吸附解析法提取液中元素含量特征
元素 Au Sb As Ag Cl Br I
Au 1 0.614** 0.362* 0.057 0.096 -0.211 -0.306
Sb 1 0.701** 0.091 -0.006 -0.437* -0.507**
As 1 0.203 -0.036 -0.236 -0.298
Ag 1 -0.174 -0.195 0.303
Cl 1 0.348 -0.328
Br 1 0.29
I 1
Table 1  非晶质锰吸附解析法-100目样品提取液中元素含量相关性分析特征
指标 极小值/% 极大值/% 均值/% 中值/% 标准差/%
wAu,-100目/wAu,全量 0.0901 2.2523 0.4068 0.3109 0.3961
wSb,-100目/wSb,全量 0.0008 0.1008 0.0180 0.0068 0.0241
wAs,-100目/wAs,全量 0.0007 0.1101 0.0134 0.0054 0.0221
wAg,-100目/wAg,全量 0.0025 0.1268 0.0205 0.0087 0.0267
wCl,-100目/wCl,全量 1.4934 9.0437 4.1473 3.6416 1.7204
wBr,-100目/wBr,全量 0.3729 3.2258 1.1876 1.0000 0.7089
wI,-100目/wI,全量 0.2375 2.3636 0.8319 0.7500 0.5110
Table 2  浸出率特征统计
Fig.4  不同方法Au含量特征对比(图例同图3)
Fig.5  不同方法As含量特征对比(图例同图3)
Fig.6  不同方法Sb含量特征对比(图例同图3)
Fig.7  505号线3种不同方法聚类分析谱系
[1] 王学求, 张必敏, 刘雪敏. 纳米地球化学:穿透覆盖层的地球化学勘查[J]. 地学前缘, 2012, 19(3):101-112.
[1] Wang X Q, Zhang B M, Liu X M. Nanoeochemistry: Deep-penetrating geochemical exploration through cover[J]. Earth Science Frontiers, 2012, 19(3):101-112.
[2] 王学求, 刘占元, 白金峰, 等. 深穿透地球化学对比研究两例[J]. 物探化探计算技术, 2005, 27(3):250-255,183.
[2] Wang X Q, Liu Z Y, Bai J F, et al. Deep-penetration geochemistry-comparison studies of two concealed deposits[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2005, 27(3):250-255,183.
[3] 丁汝福. 国内外寻找隐伏矿化探新方法研究进展[J]. 地质与勘探, 1999, 35(2):32-36.
[3] Ding R F. Research progress on new methods for geochemical exploration of hidden ore in China and abroad[J]. Geology and Exploration, 1999, 35(2):32-36.
[4] Clark J R, Kiddle G. Enzyme leaching of surficial geochemical samples of detecting hydromorphic trace-element anomalies as sociated with pre-cious-metal mineralized bedrock buried beneath glaciad overburden in northern Minnesota[J]. Society of Mining Engineers, 1990, 19:189-207.
[5] Clark J R. Detection of bedrock-related geochemical anomalies at the surface of transported overburden[J]. Explore:Newsletter of the Association of Applied Geochemists, 1992, 76(1):4-11.
[6] 徐洋. 覆盖区隐伏矿地球化学弱信息提取技术研究[D]. 北京:中国地质大学(北京), 2015.
[6] Xu Y. The geochemical methods to extract the weak geochemical signals from concealed deposits[D]. Beijing: China University of Geosciences(Beijing), 2015.
[7] 汪明启. 地球化学弱信息提取技术研究[D]. 北京:中国地质大学(北京), 2003.
[7] Wang M Q. The geochemical technique to extract the weak signal from mineralizations in overburden Area[D]. Beijing: China University of Geosciences(Beijing), 2003.
[8] Williams T M, Gunn A G. Application of enzyme leach soil analysis for epithermal gold exploration in the Andes of Ecuador[J]. Applied Geochemistry, 2002, 17(4):367-385.
doi: 10.1016/S0883-2927(01)00120-2
[9] 蒋永建, 魏俊浩, 周京仁, 等. 勘查地球化学新方法在矿产勘查中的应用及其地质效果[J]. 物探与化探, 2010, 34(2):134-138.
[9] Jiang Y J, Wei J H, Zhou J R, et al. The application of new geochemical exploration methods to mineral exploration and its geological effect[J]. Geophysical and Geochemical Exploration, 2010, 34(2):134-138.
[10] 邓会娟, 夏浩东, 息朝庄, 等. 湖南平江童源—和尚坡金矿区成矿流体地球化学特征[J]. 矿物学报, 2013, 33(4):691-697.
[10] Deng H J, Xia H D, Xi C Z, et al. Geochemical characteristics of ore-forming fluids for Tongyuan-Heshangpo gold deposit, Pingjiang County, Hunan Province[J]. Acta Mieralogica Sinica, 2013, 33(4):691-697.
[11] 袁兰陵, 季玮. 湖南万古金矿地质地球化学特征及其成因探讨[J]. 华南地质与矿产, 2008(3):22-28,67.
[11] Yuan L L, Ji W. Geochemistry and its genesis of Wangu gold deposit,Hunan[J]. Geology and Mineral Resources of South China, 2008(3):22-28,67.
[12] Clark J R. Enzyme-induced leaching of B-horizon soils for mineral exploration in areas of glacial overburden[J]. Trans Inst. Mining Metall., 1993(102):19-29.
[13] Clark J R. Concepts and models for the interpretation of enzyme leach data for mineral and petroleum exploration[G]//Enzyme leach: Model, sampling protocol and case Histories. Ontario:Activation Laboratories, 1997:1-62.
[14] Yeager J R, Clark J R, Mitchell W, et al. Enzyme leach anomalies associated with deep Mississippi Valley-type zinc ore bodies at the Elmwood Mine, Tennessee[J]. Geochemical Exploration, 1998, 61(1):103-112.
doi: 10.1016/S0375-6742(98)00005-3
[15] 张必敏, 王学求, 徐善法, 等. 盆地金属矿穿透性地球化学勘查模型与案例[J]. 中国地质, 2016, 43(5):1697-1709.
[15] Zhang B M, Wang X Q, Xu S F, et al. Models and case history studies of deep-penetrating geochemical exploration for concealed deposits in basins[J]. Geology in China, 2016, 43(5):1697-1709.
[16] 聂兰仕, 程志中, 王学求, 等. 深穿透地球化学方法在山东大尹格庄金矿区试验研究[J]. 物探化探计算技术, 2007, 29(S1):207-210,5.
[16] Nie L S, Cheng Z Z, Wang X Q, et al. Deep-penetrating geochemistry:A comparative study in the Dayingezhuang gold ore district, Shandong[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2007, 29(S1):207-210,5.
[17] 白金峰, 卢荫庥. 若干深穿透地球化学方法在智利Spence隐伏斑岩铜矿床上的应用试验[J]. 物探与化探, 2011, 35(5):610-616.
[17] Bai J F, Lu Y X. The experimantal application of some deep-penetrating geochemical methods over the spence concealed porphyry copper deposit in Chile[J]. Geophysical and Geochemical Exploration, 2011, 35(5):610-616.
[18] 刘亚轩, 李庆霞, 董永胜, 等. ICP-MS法在元素活动态分析中的应用[J]. 物探与化探, 2010, 34(4):503-507.
[18] Liu Y X, Li Q X, Dong Y S, et al. The application of ICP-MS to the analysis of active state elements[J]. Geophysical and Geochemical Exploration, 2010, 34(4):503-507.
[19] 王学求, 刘占元, 叶荣, 等. 新疆金窝子矿区深穿透地球化学对比研究[J]. 物探与化探, 2003, 27(4):247-250,254.
[19] Wang X Q, Liu Z Y, Ye R, et al. Deep-penetrating geochemistry: A comparative study in the Jinwozi gold ore district, Xinjiang[J]. Geophysical and Geochemical Exploration, 2003, 27(4):247-250,254.
[20] 杨笑笑, 罗先熔, 文美兰, 等. 地电化学法在豫西崤山黄土覆盖区找矿中的应用——以洛宁县石龙山预查区为例[J]. 物探与化探, 2019, 43(2):244-256.
[20] Yang X X, Luo X R, Wen M L, et al. The application of geo-electrochemical methods to prospecting in the loess-covered Xiaoshan Mountain,western Henan Province: A case study of the Shilongshan gold polymetallic ore prospecting area in Luoning County[J]. Geophysical and Geochemical Exploration, 2019, 43(2):244-256.
[21] 袁兰陵, 吴俊, 文志林, 等. 湖南省评价县万古矿区童源和尚坡矿段金详查报告[R]. 湖南省地质矿产勘查开发局四○二队, 2012.
[21] Yuan L L, Wu J, Wen Z L, et al. Detailed investigation report on gold in Tongyuan and Shangpo mine,Wangu mining area, Pingjia County,Hunan Province[R]. 402 Geological Prospecting Party, 2012.
[1] 王振亮, 邓友茂, 孟银生, 刘瑞德. 综合物探方法在维拉斯托铜多金属矿床北侧寻找隐伏矿体的应用[J]. 物探与化探, 2019, 43(5): 958-965.
[2] 杨帆, 郝志红, 张素荣, 徐进力, 王京彬, 成杭新, 胡瑞忠, 张舜尧. 土壤铁锰氧化物结合态元素提取技术在内蒙古新巴尔虎右旗头道井铜金矿地球化学勘查中的应用试验[J]. 物探与化探, 2019, 43(4): 692-701.
[3] 万卫, 陈振亚, 程志中, 潘含江, 秦欢欢, 赖冬蓉. CO2气体测量方法在低山丘陵区隐伏矿勘查的试验研究[J]. 物探与化探, 2019, 43(1): 70-76.
[4] 王满仓, 王疆涛, 彭海练, 李维成, 李秉强, 曾忠诚. 大比例尺地球化学勘查技术在隐伏矿找矿实践中的应用——以内蒙古乌拉特后旗查干德尔斯大型钼矿为例[J]. 物探与化探, 2018, 42(4): 668-674.
[5] 黄韬, 付小方, 杨荣, 范俊波. 探地雷达在甲基卡稀有金属矿田找矿的应用[J]. 物探与化探, 2018, 42(2): 316-324.
[6] 李伟, 刘翠辉, 贺根文, 温珍连, 陈琪. 壤中汞气测量在于都营脑隐伏矿产勘查中的应用[J]. 物探与化探, 2017, 41(5): 840-845.
[7] 王宏宇, 李涛. 双频激电法在西澳矿产勘查中的应用[J]. 物探与化探, 2016, 40(5): 923-928.
[8] 李星, 王峰, 罗大锋, 解康, 牛杰, 高明山, 杨锁. 综合物探方法在云南江城隐伏铅锌矿勘查中的应用[J]. 物探与化探, 2015, 39(6): 1119-1123.
[9] 王磊, 韩润生, 王加昇. 地球化学勘查的新技术及发展趋势[J]. 物探与化探, 2015, 39(4): 686-690.
[10] 宋豪, 郭佳, 张风祥, 倪云鹏, 冯磊. 频谱激电法在豫西某铅锌银矿区中的应用[J]. 物探与化探, 2015, 39(3): 506-511.
[11] 李晓利, 张宝林, 郭志华, 赵连锋, 肖骑彬, 张丽莉, 海连富, 李刚. 黄土覆盖区金矿深部地质结构大地电磁探测——以河北怀来颜家沟金矿为例[J]. 物探与化探, 2014, 38(6): 1124-1128.
[12] 陆桂福, 刘瑞德. 大功率激电和CSAMT在隐伏矿产勘查中的应用[J]. 物探与化探, 2014, 38(5): 921-924.
[13] 时永志, 李凯成. 综合物化探方法在地质找矿“攻深找盲”中的应用[J]. 物探与化探, 2014, 38(5): 910-915.
[14] 岑况, 刘秀丽, 彭珍, 陈媛. 地气溶胶勘查地球化学方法及其在金窝子金矿中的应用[J]. 物探与化探, 2014, 38(1): 18-22.
[15] 刘益中, 詹少全, 李爱勇, 冯戋戋, 赵松. AMT在印尼某铁矿区勘查中的应用[J]. 物探与化探, 2012, 36(4): 559-561.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com