Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (2): 292-300    DOI: 10.11720/wtyht.2021.1134
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
金属元素形成原生晕能力定量评价——以青海省扎家同哪金矿为例
袁兆宪1(), 侯振广2(), 任志栋3, 刘永乐4, 张大明4, 张建平4
1.河北地质大学 资源与环境工程研究所,河北 石家庄 050031
2.青海省第五地质矿产勘查院,青海 西宁 810008
3.中国建筑材料工业地质勘查中心青海总队,青海 西宁 810008
4.青海省第三地质矿产勘查院,青海 西宁 810029
Quantitative evaluation of the ability of elements in forming primary halos: A case study of the Zhajiatongna gold deposit, Qinghai Province
YUAN Zhao-Xian1(), HOU Zhen-Guang2(), REN Zhi-Dong3, LIU Yong-Le4, ZHANG Da-Ming4, ZHANG Jian-Ping4
1. Institute of Resource and Environmental Engineering,Hebei GEO University,Shijiazhuang 050031, China
2. No.5 Institute of Geology and Mineral Exploration, Qinghai Bureau of Geological Exploration and Development, Xining 810008, China
3. Qinghai Branch of China Building Material Industry Geological Survey Center, Xining 810008, China
4. No.3 Institute of Geology and Mineral Exploration, Qinghai Bureau of Geological Exploration and Development, Xining 810029, China
全文: PDF(1983 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在进行原生晕元素分带研究时,所选元素多未进行筛选,不利于正确认识分带规律及指导矿产预测。本文基于扎家同哪金矿2 779个钻孔样品数据,拟通过定量评价不同金属元素在围岩、矿化围岩、矿石等中的富集程度,研究不同元素在矿化过程中形成原生晕的能力差异。研究发现,扎家同哪金矿Au、As、Sb、Hg、W、Ag在围岩、矿化围岩和矿石中富集程度递增,易形成原生晕,Zn仅在矿石中富集,成晕规模有限,Mo、Cu、Pb、Sn富集微弱或表现为亏损,较难形成原生晕;扎家同哪金矿不同位置与成矿有关的富集元素为Au、As、Sb(围岩)—Au、As、Sb、W、Hg(Ag)(矿化围岩)—Au、As、Ag、Sb、W、Hg、Zn(矿石),成矿过程中元素在矿化围岩中富集的权重由大至小为As、Hg、Au、Sb、W、Mo、Sn、Pb、Zn、Cu、Ag,进入围岩能力总体表现为低—高—中温元素递减的趋势。对于扎家同哪金矿,在研究原生晕分带特征、指导进一步找矿时,宜优先选用As、Hg、Au、Sb和W等元素。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁兆宪
侯振广
任志栋
刘永乐
张大明
张建平
关键词 原生晕富集程度成晕能力定量评价扎家同哪金矿    
Abstract

A procedure to screen the elements used in the research on the elemental zonation in a primary halo is rarely conducted, which is not conducive to the acquisition of an accurate understanding of the rules of elemental zonation. In this paper, the authors chose the Zhajiatongna gold deposit in Qinghai Province as a study case and aimed to study the difference between ore-forming metallic elements in the ability of forming a primary halo through comparing the elemental enrichment degrees in the wall rocks, mineralized wall rocks, and orebodies and on the basis of 2 779 samples from the drill cores of the deposit. It is found that the concentrations of Au, As, Sb, Hg, W, and Ag progressively increase from the wall rocks through mineralized wall rocks to orebodies, indicating a greater possibility of forming a primary halo for these elements. Zinc is enriched only in the orebodies, with less possibility of forming a large-scale primary halo. Elements of Mo, Cu, Pb, and Sn show insignificant enrichment or even show depletion, indicating a less possibility of forming a primary halo.A trend of enrichment zonation of ore-forming elements was recognized: Au, As, Sb in the wall rocks, Au, As, Sb, W, Hg (Ag) in the mineralized wall rocks, and Au, As, Ag, Sb, W, Hg and Zn in the orebodies. Elements show a decreasing weight of enrichment in the mineralized wall rocks in order of As, Hg, Au, Sb, W, Mo, Sn, Pb, Zn, Cu, and Ag, suggesting the progressively decreasing ability of entering into the wall rocks from the orebodies in order of low-temperature metallogenic elements through medium-temperature metallogenic elements to high-temperature metallogenic elements. Therefore, in the Zhajiatongna gold deposit, elements such as As, Hg, Au, Sb and W are optimal for researches on elemental zonation and mineral prediction.

Key wordsprimary halo    enrichment degree    ability of forming a primary halo    quantitative evaluation    Zhajiatongna gold deposit
收稿日期: 2020-03-21      修回日期: 2020-09-22      出版日期: 2021-04-20
ZTFLH:  P632  
基金资助:国家重点研发计划项目(2016YFC0600501);国家自然科学基金项目(41602338)
通讯作者: 侯振广
作者简介: 袁兆宪(1986-),男,助理研究员,主要从事资源定量预测与评价研究工作。Email: sdyzx86@126.com
引用本文:   
袁兆宪, 侯振广, 任志栋, 刘永乐, 张大明, 张建平. 金属元素形成原生晕能力定量评价——以青海省扎家同哪金矿为例[J]. 物探与化探, 2021, 45(2): 292-300.
YUAN Zhao-Xian, HOU Zhen-Guang, REN Zhi-Dong, LIU Yong-Le, ZHANG Da-Ming, ZHANG Jian-Ping. Quantitative evaluation of the ability of elements in forming primary halos: A case study of the Zhajiatongna gold deposit, Qinghai Province. Geophysical and Geochemical Exploration, 2021, 45(2): 292-300.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1134      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I2/292
元素 Ag As Au Cu Hg Mo Pb Sb Sn Zn
方法 ES AF ICP-MS ICP-MS AF ICP-MS ICP-MS AF ES ICP-MS
检出限 20 0.33 0.25 1 0.5 0.15 0.85 0.046 0.85 4
Table 1  各元素使用的检测方法和检出限
Fig.1  围岩、矿化围岩和矿体中元素富集示意
①—围岩富集;②—矿化富集;③—矿石富集
参数 Au As W Mo Sb Pb Ag Hg Cu Zn Sn
平均值 40.34 93.77 2.59 0.62 3.75 23.36 71.79 20.61 38.18 90.53 2.82
Cv 6.61 4.04 1.59 1.37 1.24 0.85 0.52 0.43 0.38 0.26 0.16
富集系数 28.01 6.75 1.93 1.41 3.68 1.41 1.33 0.53 2.06 1.63 1.19
Table 2  扎家同哪金矿2 779个原生晕样品金属元素含量特征
Fig.2  金属元素在围岩、矿化围岩和矿石中的富集系数变化趋势
Fig.3  金属元素的围岩富集系数及在三种围岩中的差异
Fig.4  金属元素的矿化富集系数及在三种围岩中的差异
Fig.5  金属元素的矿石富集系数
Fig.6  金属元素在围岩、矿化围岩和矿石中的富集权重分布
矿化 矿石 元素 原生晕
+ + Au、As、Sb、W、Ag、Hg、(Mo)
+ -
- + Zn
- - Pb、Cu、Sn ×
Table 3  元素富集特征与形成原生晕潜力
Fig.7  扎家同哪金矿成矿富集元素空间分布示意
[1] 欧阳宗圻, 李惠, 刘汉忠. 典型有色金属矿床地球化学异常模式[M]. 北京: 科学出版社, 1990.
[1] Ouyang Z X, Li H, Liu H Z. Geochemical anomaly models for typical nonferrous metal deposits[M]. Beijing: Science Press, 1990.
[2] 邵跃. 热液矿床岩石测量 (原生晕法) 找矿[M]. 北京: 地质出版社, 1997.
[2] Shao Y. Rock prospecting of hydrothermal deposit (primary halo method)[M]. Beijing: Geological Publishing House, 1997.
[3] 刘崇民. 金属矿床原生晕研究进展[J]. 地质学报, 2006,80(10):1528-1538.
[3] Liu C M. Progress in studies on primary halos of ore deposit[J]. Acta Geologicasinica, 2006,80(10):1528-1538.
[4] 李惠, 禹斌, 李德亮, 等. 化探深部预测新方法综述[J]. 矿产勘查, 2010,1(2):156-160.
[4] Li H, Yu B, Li D L, et al. Summary of new methods on deep prediction of geochemical exploration[J]. Mineral Exploration, 2010,1(2):156-160.
[5] 黄薰德, 郁彦. 地球化学找矿[M]. 北京: 地质出版社, 1985.
[5] Huang X D, Yu Y. Geochemical Prospecting[M]. Beijing: Geological Publishing House, 1985.
[6] Beus A A, Grigorian S V. Geochemical exploration methods for mineral deposits[M]. Wilmette: Applied Publishing Ltd., 1977.
[7] Zhou Y. Geochemical exploration for deeply hidden ore in southeastern Hubei Province[J]. Journal of Geochemical Exploration, 1989,33(1):135-144.
[8] Konstantinov M M, Strujkov S F. Application of indicator halos (signs of ore remobilization) in exploration for blind gold and silver deposits[J]. Journal of Geochemical Exploration, 1995,54(1):1-17.
[9] 黄转莹, 路润安. 陕西省凤县铅硐山大型铅锌矿床原生异常分带及分带指数[J]. 地质与勘探, 2003,39(3):39-44.
[9] Huang Z Y, Lu R A. Zoning characteristics and index of primary geochemical anomalies in Qiandongshan Pb-Zn deposit, Shaanxi Province, China[J]. Geology and Prospecting, 2003,39(3):39-44.
[10] Liu L, Peng S. Prediction of hidden ore bodies by synjournal of geological, geophysical and geochemical information based on dynamic model in Fenghuangshan ore field, Tongling district, China[J]. Journal of Geochemical Exploration, 2004,81(1):81-98.
[11] Ghavami-Riabi R, Theart H F, De Jager C. Detection of concealed Cu-Zn massive sulfide mineralization below eolian sand and a calcrete cover in the eastern part of the Namaqua Metamorphic Province, South Africa[J]. Journal of Geochemical Exploration, 2008,97(2-3):83-101.
[12] 李惠, 张文华, 刘宝林, 等. 中国主要类型金矿床的原生晕轴向分带序列研究及其应用准则[J]. 地质与勘探, 1999,35(1):32-35.
[12] Li H, Zhang W H, Liu B L, et al. The study on axial zonality sequence of primary halo and some criteria for the application of this sequence for major types of gold deposits in China[J]. Geology and Prospecting, 1999,35(1):32-35.
[13] 王文, 李鹏, 夏有清, 等. 东昆仑大场金矿田扎家同哪矿床地质特征及找矿方向[J]. 青海大学学报: 自然科学版, 2012,30(5):60-68.
[13] Wang W, Li P, Xia Y Q, et al. Geological features and prospecting orientation of Zhajiatongna deposit in Dachang golden orefield of Eastern Kunlun mountain[J]. Journal of Qinghai University:Nature Science Edition, 2012,30(5):60-68.
[14] 高永旺, 王福德, 李琳业, 等. 青海省曲麻莱县大场金矿床165-60线勘探报告[R]. 西宁:青海省第五地质矿产勘查院, 2011.
[14] Gao Y W, Wang F D, Li L Y, et al. Report on the prospecting line 165-60 in the Dachang gold deposit, Qumalai county, Qinghai province, China[R]. Xining:No. 5 Institute of Geology and Mineral Exploration, Qinghai Bureau of Geological Exploration and Development, 2011.
[15] 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984.
[15] Liu Y J, Cao L M, Li Z L, et al. Element geochemistry[M]. Beijing: Science Press, 1984.
[16] 季克俭, 吴学汉, 张国柄. 热液矿床的矿源、水源和热源及矿床的分布规律[M]. 北京: 北京科学技术出版社, 1989.
[16] Ji K J, Wu X H, Zhang G B. Distribution regularity of source, water, heat and deposits about hydrothermal deposits [M]. Beijing: Beijing Science and Technology Press, 1989.
[17] 朴寿成, 刘树田, 连长云, 等. 地球化学负异常及其找矿意义[J]. 地质与勘探, 1996,32(2):46-50.
[17] Piao S C, Liu S T, Lian C Y, et al. Geochemical negative anomaly and its prospecting significances[J]. Geology and Prospecting, 1996,32(2):46-50.
[18] 马生明, 朱立新, 刘海良, 等. 甘肃北山辉铜山铜矿地球化学异常结构研究[J]. 地球学报, 2011,32(4):405-412.
[18] Ma S M, Zhu L X, Liu H L, et al. A study of geochemical anomaly structure of the Huitongshan copper deposit in Beishan area, Gansu Province[J]. Acta Geoscientica Sinica, 2011,32(4):405-412.
[1] 陈伟, 谭友, 曹正端, 廖志权, 张宁发, 傅海晖. 构造原生晕在攻深找盲中的应用——以赣南银坑牛形坝铅锌金银矿床为例[J]. 物探与化探, 2023, 47(4): 892-905.
[2] 程培生, 汪曙潮, 李壮, 顾大年, 张建明, 杜东旭. 安徽西湾铅锌矿含矿层位顶部原生晕特征[J]. 物探与化探, 2022, 46(6): 1381-1387.
[3] 侯振广, 袁兆宪. 原生晕中元素及元素组合空间变化性研究——以青海省扎家同哪金矿为例[J]. 物探与化探, 2022, 46(4): 798-807.
[4] 李好. 无线电波坑道透视法在煤矿井下水力压裂效果评价中的应用[J]. 物探与化探, 2017, 41(4): 741-747.
[5] 缪宇, 郭光华, 王建平, 张七道, 张锡昌, 杨飞, 韩钥. 云南绿春县杨家寨黄竹林地区金及多金属地球化学异常评价及找矿模型[J]. 物探与化探, 2016, 40(6): 1063-1069.
[6] 唐名鹰, 彭永和, 朱德全, 李书凯, 田孟. 青海赛坝沟金矿床Ⅳ-3号矿体原生晕特征与深部预测[J]. 物探与化探, 2016, 40(3): 475-481.
[7] 王攀, 梁明星. 煤系烃源岩测井响应特征及有机碳评价方法[J]. 物探与化探, 2016, 40(1): 197-202.
[8] 张鹏, 张旭伟, 马渊博, 杨超, 薛杰, 张冀骞. 察汗乌苏金矿地球化学找矿信息评价及找矿前景[J]. 物探与化探, 2016, 40(1): 46-50.
[9] 庞绪成, 张凯涛, 郭跃闪, 赵少攀. 豫西龙门店银矿K4矿体原生晕特征及深部预测[J]. 物探与化探, 2015, 39(5): 909-914.
[10] 张志军, 周东红, 孙成禹, 彭刚. 基于三维模型数据的地震振幅补偿处理技术的保幅性分析[J]. 物探与化探, 2015, 39(3): 621-626.
[11] 鲍霖, 申俊峰, 曹卫东, 薄海军, 李金春, 李可, 王佳新. 甘肃岗岔金矿3号矿脉原生晕分带特征及其找矿意义[J]. 物探与化探, 2014, 38(4): 660-666.
[12] 刘光永, 戴茂昌, 祁进平, 张锦章. 福建省紫金山铜金矿床原生晕地球化学特征及深部找矿前景[J]. 物探与化探, 2014, (3): 434-440.
[13] 郝立波, 冯朔伟, 赵玉岩, 陆继龙, 赵禹. 大兴安岭北段三道湾子碲金型矿床的原生晕分带及意义[J]. 物探与化探, 2014, 38(2): 284-288.
[14] 吴二, 陈远荣, 刘巍, 卢月玲, 蒋慧俏, 张冠清, 蓝妮拉, 高儇博. 烃气测量法在辽宁白云金矿找矿潜力评价中的应用[J]. 物探与化探, 2014, 38(2): 248-254.
[15] 卢月玲, 陈远荣, 廖徳好, 罗亦城, 林立保, 周锋, 杨柳. 烃气测量法在维拉斯托锌铜多金属矿区找矿预测中的应用[J]. 物探与化探, 2014, 38(2): 255-260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com