Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (2): 331-342    DOI: 10.11720/wtyht.2023.1192
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
浅钻地球化学测量在甘肃北山南金山金矿外围浅覆盖区的应用
魏振宏1(), 赵吉昌2(), 曲正钢3, 樊新祥2, 李省晔2, 陈海云2, 刘永彪2, 杨镇熙2
1.甘肃省自然资源厅,甘肃 兰州 730000
2.甘肃省地质矿产勘查开发局 第四地质矿产勘查院,甘肃 酒泉 735000
3.甘肃省地质调查院,甘肃 兰州 730000
Application of shallow drilling geochemical survey to shallow overburden area at the peripheral of Nanjinshan gold mine in Beishan, Gansu Province
WEI Zhen-Hong1(), ZHAO Ji-Chang2(), QU Zheng-Gang3, FAN Xin-Xiang2, LI Sheng-Ye2, CHEN Hai-Yun2, LIU Yong-Biao2, YANG Zhen-Xi2
1. Natural Resources Department of Gansu Province, Lanzhou, 730000, China
2. Fourth Institute of Geological and Mineral Exploraton of Gansu Provinical Bureau of Geology and Mineral Resourses,Jiuquan 735000, China
3. Geological Survey of Gansu Province, Lanzhou 730000, China
全文: PDF(8368 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

南金山金矿是北山成矿带典型的浅成低温热液型矿床,该矿床沿NE向延伸至外围浅覆盖区,外围成矿潜力较大。为进一步实现外围浅覆盖区的找矿突破,选择开展机动浅钻地球化学测量试点工作。依据覆盖层性质及厚度,利用车载空气正循环+三翼合金刮刀钻进/气动潜孔锤钻进工艺对浅覆盖区开展机动浅钻化探取样126件,采样密度16.8个点/km2,进一步探讨了浅覆盖区浅钻化探方法技术,包括钻进工艺选择、采样网度、采样物质、样品采集等内容;对零星基岩区开展土壤测量,采集样品278件,采样密度48.77个点/km2;分析测试了Au、Ag、As、Sb、Hg、Cu、Pb、Zn、W、Sn、Mo、Bi、Cr、Co、Ni等15种元素。通过上述工作,圈定化探综合异常7处,后经异常查证在基岩区新圈定金矿体6条、银矿体1条,浅覆盖区新发现隐伏金矿体2条、银矿体1条,取得了较好的找矿效果。本次研究表明浅钻地球化学测量在北山干旱荒漠戈壁景观浅覆盖区找矿是有效可行的。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏振宏
赵吉昌
曲正钢
樊新祥
李省晔
陈海云
刘永彪
杨镇熙
关键词 浅钻地球化学测量浅覆盖区南金山金矿甘肃北山    
Abstract

The Nanjinshan gold deposit is a typical epithermal deposit in Beishan metallogenic belt, which extends in a N-E direction to the peripheral shallow cover zone. In order to further achieve the breakthrough of prospecting in the peripheral shallow overburden area, the pilot work of motorized shallow drilling geochemical survey carried out. Based on the nature and thickness of the overburden, 126 motorized shallow drilling geochemical exploration samples are taken in the shallow overburden area using the vehicle mounted air positive circulation and three wing alloy scraper drilling or pneumatic DTH hammer drilling technology, with a sampling density of 16.8 points per square kilometer. The shallow drilling geochemical exploration methods and technologies in the shallow overburden area are further discussed, including the selection of drilling technology, sampling network, sampling materials, sample collection, etc. Soil survey was carried out in sporadic bedrock areas, and 278 samples were collected, and the sampling density was 48.77 points per square kilometer. Fifteen elements including Au, Ag, as, Sb, Hg, Cu, Pb, Zn, W, Sn, Mo, Bi, Cr, Co and Ni were analyzed. Through the above work, seven comprehensive geochemical anomalies were delineated. After anomaly investigation, six gold deposit bodies and one silver deposit body were found in the new circle in the bedrock area, and two concealed gold deposits and one silver deposit body were found in the shallow overburden area. The results show that shallow drilling geochemical survey is effective and feasible in the shallow overburden area of arid Gobi landscape in Beishan.

Key wordsshallow drilling geochemical survey    shallow overburden area    Nanjinshan gold mine    Beishan, Gansu
收稿日期: 2022-04-15      修回日期: 2022-08-01      出版日期: 2023-04-20
ZTFLH:  P632  
基金资助:甘肃省基础地质调查项目(甘资勘发〔2020〕134号);甘肃省基础地质调查项目(甘资勘函[2021]184号);甘肃省科技计划项目(21JR7RA787);甘肃省科技计划项目(22JR5RA819)
通讯作者: 赵吉昌(1984-),男,正高级工程师,从事区域矿产地质调查及矿产勘查工作。Email:278717758@qq.com
引用本文:   
魏振宏, 赵吉昌, 曲正钢, 樊新祥, 李省晔, 陈海云, 刘永彪, 杨镇熙. 浅钻地球化学测量在甘肃北山南金山金矿外围浅覆盖区的应用[J]. 物探与化探, 2023, 47(2): 331-342.
WEI Zhen-Hong, ZHAO Ji-Chang, QU Zheng-Gang, FAN Xin-Xiang, LI Sheng-Ye, CHEN Hai-Yun, LIU Yong-Biao, YANG Zhen-Xi. Application of shallow drilling geochemical survey to shallow overburden area at the peripheral of Nanjinshan gold mine in Beishan, Gansu Province. Geophysical and Geochemical Exploration, 2023, 47(2): 331-342.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1192      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I2/331
Fig.1  南金山金矿外围一带地质矿产分布(据1:5万野马大泉幅修编[22])
1—第四系全新统冲积层;2—第四系更新统冲洪积物;3—新近系苦泉组;4—石炭系白山组;5—中石炭世二长花岗岩;6—中石炭世石英闪长岩;7—闪长岩脉;8—石英脉;9—性质不明断层;10—平移断层;11—中型金矿床位置;12—金矿点位置;13—铜多金属矿床位置;14—叶腊石矿床位置;15—地层产状;16—研究区
Fig.2  研究区覆盖结构单元层综合柱状图(a)、覆盖层厚度等值线(b)及覆盖层沉积示意(c)
Fig.3  研究区浅覆盖区地貌景观(a)及机动浅钻现场施工照片(b)
参数 Cr Co Ni Cu Zn Mo W Pb Bi As Sb Sn Ag Hg Au
算术平均值 X ˉ 1 72.0 8.3 26.6 31.1 96.7 2.42 3.15 22.8 0.27 70.8 4.37 1.1 66.528 35 5.5
X ˉ 2 62.8 6.9 24.4 20.4 69.2 1.91 2.48 23.4 0.28 62.5 5.37 1.4 71.539 55 5
校正系数 k1 0.87 0.83 0.92 0.66 0.72 0.79 0.79 1.03 1.04 0.88 1.23 1.27 1.08 1.57 0.91
k2 1.15 1.20 1.09 1.52 1.40 1.27 1.27 0.97 0.96 1.13 0.81 0.79 0.93 0.64 1.10
Table 1  经过迭代剔除后的算术平均值及校正系数
元素 地球化学场(n=384) 地球化学背景场 D 北山地区
背景值[31]
X ˉ S Cv Kk X ˉ 0 S0 Cv0 Kk0
Cr 73.40 87.70 1.19 1.63 66.00 22.30 0.50 1.47 4.37 44.94
Co 8.30 9.80 1.18 0.88 7.40 3.30 0.35 0.78 3.33 9.43
Ni 29.10 30.90 1.06 1.24 25.30 12.10 0.52 1.08 2.94 23.38
Cu 29.20 42.50 1.46 1.72 24.40 13.40 0.79 1.44 3.80 17.00
Zn 93.30 79.40 0.85 2.21 78.50 34.10 0.81 1.86 2.77 42.30
Mo 2.76 2.98 1.08 3.58 1.86 1.13 1.47 2.42 3.91 0.77
W 4.29 6.85 1.60 4.77 2.61 1.16 1.29 2.90 9.71 0.90
Pb 34.90 87.60 2.51 2.53 23.50 10.50 0.76 1.70 12.39 13.80
Bi 0.43 0.72 1.67 0.62 0.27 0.12 0.17 0.39 9.56 0.69
As 122.10 185.60 1.52 33.73 66.20 69.10 19.09 18.29 4.95 3.62
Sb 8.02 9.98 1.24 19.56 5.03 4.50 10.98 12.27 3.54 0.41
Sn 1.40 0.70 0.50 0.76 1.30 0.30 0.16 0.70 2.51 1.85
Ag 286.91 764.48 2.66 5.58 69.69 21.32 0.41 1.36 147.62 51.40
Hg 52.00 35.00 0.67 3.05 49.00 29.00 1.70 2.88 1.28 17.03
Au 22.90 88.20 3.85 18.62 4.90 3.80 3.09 3.98 108.47 1.23
Table 2  研究区地球化学参数统计
Fig.4  元素聚类分析谱系
元素 成分
F1 F2 F3 F4 F5 F6
Cr -0.039 0.041 0.952 -0.002 0.043 0.08
Co 0.099 0.896 0.295 0.063 0.017 0.016
Ni 0.123 0.458 0.835 0.02 0.088 0.023
Cu 0.199 0.912 0.039 0.108 0.038 0.003
Zn 0.151 0.183 0.17 0.019 0.863 0.012
Mo 0.603 0.299 -0.037 0.003 0.252 0.014
W -0.187 0.075 -0.044 0.787 0.198 0.056
Pb 0.029 -0.092 -0.045 0.002 0.852 0.099
Bi -0.066 0.081 -0.138 -0.035 0.165 0.857
As 0.699 0.36 0.086 -0.018 0.033 -0.156
Sb 0.842 0.093 0.069 0.194 0.133 -0.061
Sn 0.039 -0.072 0.356 0.06 -0.036 0.752
Ag 0.494 -0.017 0.123 0.642 -0.091 -0.038
Hg 0.541 -0.253 -0.083 0.063 -0.147 0.275
Au 0.223 0.085 -0.004 0.786 -0.111 -0.008
Table 3  因子旋转后的成分矩阵
Fig.5  研究区地质简图(a)、Au地球化学异常分布(b)及Ag地球化学异常分布(c)
1—全新统;2—更新统;3—新近系;4—石炭系白山组;5—中石炭世二长花岗岩;6—中石炭世石英闪长岩;7—中石炭世闪长岩;8—次生石英岩;9—性质不明断层;10—平移断层;11—正断层;12—逆断层;13—机动浅钻孔位;14—土壤测量点位;15—施工见矿钻孔;16—元素高值点;17—浅钻剖面位置;18—综合异常及编号;19—地球化学测量范围;20—选矿厂位置;21—金矿化带;22—金银矿化带
Fig.6  基岩区Au1~Au3矿体(a)和Au4~Au6矿体(b)采样平面
1—凝灰质砾岩;2—含砾凝灰质砂岩;3—沉凝灰岩;4—硅质灰岩;5—英安质凝灰岩; 6—次生石英岩脉;7—闪长岩脉;8—Au矿体及编号;9— Ag矿体及编号;10—实测性质不明断层;11—实测逆断层;12—地层产状;13—勘探线位置及编号;14—见矿钻孔位置及编号;15—完工探槽及编号;16—矿体厚度(m)/金平均品位(g/t) 银平均品位(g/t)
Fig.7  研究区96勘探线视极化率断面(a)、视电阻率断面(b)、元素曲线(c)及勘探线剖面(d)
1—第四系洪冲积砂砾石;2—砾岩;3—粉砂质泥岩;4—含砾粉砂质泥岩;5—含角砾英安质凝灰岩;6—凝灰质板岩;7—褐铁矿化含角砾凝灰质板岩;8—绢云母板岩;9—含炭绢云母板岩;10—黄铁矿化含炭绢云母板岩;11—次生石英岩;12—金矿体;13—推测断层界线;14—已完工机动浅钻位置及编号;15—已完工钻孔位置及编号;16—矿体厚度(m)/金平均品位(g/t);17—潜水面
Fig.8  南金山外围ZK9601钻孔中矿石(a)及显微镜下南金山金矿石(b)[33]照片
Au—自然金;Py—黄铁矿;Cpy—黄铜矿;Qz—石英
[1] 卜建军, 吴俊, 史冀忠, 等. 北山—巴丹吉林地区石炭纪—二叠纪构造古地理及其演化[J]. 地质科技情报, 2019, 38(6):113-120.
[1] Bu J J, Wu J, Shi J Z, et al. Carboniferous-permian tcetonic paleogeography of Beishan-Badanjilin region and lisevolution[J]. Geological Science and Technology Information, 2019, 38(6):113-120.
[2] 段海龙, 陈耀, 张青, 等. 北山成矿带月牙山—老硐沟地区铜多金属矿床成矿预测[J]. 地质科技通报, 2021, 40(5):188-197.
[2] Duan H L, Chen Y, Zhang Q, et al. Metallogenic prediction of copper polymetallic deposit in the Yucyashan-Laodonggou area,Beishan ore belt[J]. Bulletin of Geological Science and Technology, 2021, 40(5):188-197.
[3] 王钏屹, 王琦崧, 疏孙平, 等. 北山成矿带金窝子金矿床成矿流体时空演化与成矿机制[J]. 地球科学, 2018, 43(9):3126-3140.
[3] Wang C Y, Wang Q S, Shu S P, et al. Temporal and spatial evolution of ore-forming fluid and metallogenic belt[J]. Earth Science, 2018, 43(9):3126-3140.
[4] 田争亮, 吴锡丹. 北山成矿带金矿床(点)分布规律及找矿方向[J]. 新疆地质, 2001, 19(2):127-129,141.
[4] Tian Z L, Wu X D. Methods for predlcting reservoir of gravity-flow sandbody in deep water and results analysis[J]. Xinjiang Geology, 2001, 19(2):127-129,141.
[5] 曾长华, 吴大江, 夏文彬, 等. 北山成矿带金矿成矿规律与远景[J]. 新疆地质, 2002, 20(3):219-223.
[5] Zeng C H, Wu D J, Xia W B, et al. Metallogenic regularity and prospect of gold depostits of Beishan minerallzation belt[J]. Xinjiang Geology, 2002, 20(3):219-223.
[6] 王玉往, 王京彬. 北山地区与火山活动有关铜多金属成矿条件及找矿前景浅析[J]. 地质与勘探, 2005, 41(6):37-40.
[6] Wang Y W, Wang J B. Metallogenic factors and potential for Cu-polymetallic deposits related to volcanic activilf in the Beishan area[J]. Geology and Prospecting, 2005, 41(6):37-40.
[7] 聂凤军, 胡朋, 江思宏, 等. 北山北部古生代两类花岗岩及有关矿床的钕同位素特征[J]. 矿床地质, 2006, 25(S1):139-142.
[7] Nie F J, Hu P, Jiang S H, et al. Nd isotope features of two types of granitoids and related ore deposits in the northern part of Beishan area,Northwest China[J]. Mineral Deposits, 2006, 25(S1):139-142.
[8] 李厚民, 丁建华, 李立兴, 等. 东天山雅满苏铁矿床矽卡岩成因及矿床成因类型[J]. 地质学报, 2014, 88(12):2477-2489.
[8] Li H M, Ding J H, Li L X, et al. The genesis of the skarn and the genetic type of the Yamansu iron deposit,Eastern Tianshan,Xingjiang[J]. Atca Geologica Sinica, 2014, 88(12):2477-2489.
[9] 丁建华, 邢树文, 肖克炎, 等. 东天山—北山Cu-Ni-Au-Pb-Zn成矿带主要成矿地质特征及潜力分析[J]. 地质学报, 2016, 90(7):1392-1412.
[9] Ding J H, Xing S W, Xiao K Y, et al. Geological characteristics and resource potential analysis of the Dongtianshan-Beishan Cu-Ni-Au-Pb-Zn metallogenic belts[J]. Acta Geologica Sinica, 2016, 90(7):1392-1412.
[10] 疏孙平, 张静, 陈衍景, 等. 北山成矿带霍勒扎德盖金矿床碲化物的发现及其地质意义[J]. 岩石学报, 2017, 33(6):1859-1871.
[10] Shu S P, Zhang J, Chen Y J, et al. Discovery and geological significance of tellurides in the Herzhedegai gold deposit,Beishan metallogenic belt[J]. Actor Petrologica Sinica, 2017, 33(6):1859-1871.
[11] 李小东, 王明卫, 写熹, 等. 安徽凤阳地区浅钻地球化学方法的找矿应用研究[J]. 地质调查与研究, 2018, 41(3):217-223.
[11] Li X D, Wang M W, Xie X, et al. Application of shallow drilling geochemical method in Fengyang area Anhui Province[J]. Geological Survey and Research, 2018, 41(3):217-223.
[12] 孟贵祥, 吕庆田, 严加永, 等. “穿透性”探测技术在覆盖区地质矿产调查中的应用研究[J]. 地球学报, 2019, 40(5):637-650.
[12] Meng G X, Lyu Q T, Yan J Y, et al. The research and application of explorational technology of “penetrating” to geology and mineral investigation in overburden area[J]. Acte Geoscientica Sinica, 2019, 40(5):637-650.
[13] 段星星, 黑欢, 梁楠, 等. 新疆东天山玉海铜矿外围浅覆盖区1:5万化探方法技术及应用[J]. 西北地质, 2019, 52(3):143-150.
[13] Duan X X, Hei H, Liang N, et al. 1:50000 geochemical prospecting techniques and their applications in shallow covered area outside the yuhai copper deposit in east Tianshan mountains,Xinjiang[J]. Northwestern Geology, 2019, 52(3):143-150.
[14] 段星星, 刘拓, 董会, 等. 东天山玉海浅覆盖区机动浅钻化探方法技术研究[J]. 西北地质, 2018, 51(3):192-199.
[14] Duan X X, Liu T, Dong H, et al. Research and application of motorized shallow drilling geochemical exploration in Yuhai shallow overburden area,east Tianshan[J]. Northwestern Geology, 2018, 51(3):192-199.
[15] 张小胖, 王帅, 赖柏生, 等. 浅覆盖区1:5万浅钻地球化学测量采样密度探讨——以安徽凤阳大王府—江山铅锌金矿为例[J]. 华东地质, 2021, 42(1):116-123.
[15] Zhang X P, Wang S, Lai B S, et al. Discussion on sampling density of 1:50 000 short-hole drilling geochemical survey in shallow covered region:A case study of Dawangfu-Jiangshan Pb-Zn-Au deposit in Fengyang,Anhui Province[J]. East China Geology, 2021, 42(1):116-123.
[16] Wang X Q, Zhang B B, Lin X, et al. Geochemical challenges of diverse regolithcovered terrains for mineral exploration in China[J]. Ore Geology Reviews, 2016, 73:417-431.
doi: 10.1016/j.oregeorev.2015.08.015
[17] Anand Ravi R. Regolith-landform processes and geochemical exploration for base metal deposits in regolith-dominated terrains of the Mt Isa region,Northwest Queensland,Australia[J]. Ore Geology Reviews, 2016, 73:451-474.
doi: 10.1016/j.oregeorev.2015.08.014
[18] 杨帆, 孔牧, 刘华忠, 等. 北山干旱荒漠戈壁残山景观1:5万地球化学勘查方法技术的选择[J]. 物探与化探, 2021, 35(3):308-312,332.
[18] Yang F, Kong M, Liu H Z, et al. The technological application of teand tmmode to the prospelting for structural flssure water[J]. Geophysical and Geochemical Exploration, 2021, 35(3):308-312,332.
[19] 曹亮, 许荣科, 段其发, 等. 甘肃北山南金山金矿床地质特征及深部成矿预测[J]. 地质与勘探, 2010, 46(3):377-384.
[19] Cao L, Xu R K, Duan Q F, et al. Geolgical features of Nanjinshan gold deposit and prediction to minera lization at depth in the Beishan area,Gansu Province[J]. Geology and Exploration, 2010, 35(3):377-384.
[20] 潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1):1-28.
[20] Pan G T, Xiao Q H, Lu S N, et al. Subdivision of tectonic units in China[J]. Geology in China, 2009, 36(1):1-28.
[21] 张新虎, 刘建宏, 赵彦庆. 甘肃省成矿区(带)研究[J]. 甘肃地质, 2008, 17(2):1-8,49.
[21] Zhang X H, Liu J H, Zhao Y Q. Study on metallogenic provinces(Zones)in Gansu Province[J]. Gansu Geology, 2008, 17(2):1-8,49.
[22] 甘肃省地质矿产局酒泉地质矿产调查队. 甘肃省肃北蒙古族自治县南金山金矿区详查地质报告[R]. 1992:16-18.
[22] Jiuquan Geological and Mineral Survey Team of Gansu Provincial Bureau of Geology and Mineral Resources. Detailed geological survey report of Nanjinshan gold mine area,Subei Mongolian Autonomous County,Gansu Province[R]. 1992:16-18.
[23] 沈远超, 申萍, 曾庆栋, 等. 甘肃北山地区南金山金矿床隐爆角砾岩体的发现及成矿规律研究[J]. 矿床地质, 2006, 25(5):572-581.
[23] Shen Y C, Shen P, Zeng Q D, et al. Discovery of cryptoexplosive breccia in Nanjinshan fold deposit of Beishan area,Gansu Province and study of metallogenic regularity[J]. Mineral Deposits, 2006, 25(5):572-581.
[24] 熊文勃, 赵龙兴. 甘肃南金山金矿地质特征及金富集规律分析[J]. 矿产勘查, 2020, 11(1):40-46.
[24] Xiong W B, Zhao L X. Analysis on geological characteristics and gold enrichment law of Nanjinshan gold deposit in Gansu Province[J]. Mineral Exploration, 2020, 11(1):40-46.
[25] 冯治汉, 刘元平, 叶得金, 等. 甘肃省景观地球化学特征初探[J]. 地质地球化学, 2002, 30(3):68-72.
[25] Feng Z H, Liu Y P, Ye D J, et al. Preliminary study of landscape geochemical features in Gansu[J]. Geology-Geochemistry, 2002, 30(3):68-72.
[26] 徐仁廷. 甘肃北山干旱荒漠景观化探方法技术研究[D]. 北京: 中国地质大学(北京), 2006.
[26] Xu R T. The study of geochemical technology for mineral exploration in the arid Gobi Desert terrain,Beishan Mountains area,Gansu[D]. Beijing: China University of Geosciences (Beijing), 2006.
[27] 赵吉昌, 范应, 雷一兰, 等. 构造地球化学岩屑测量在甘肃党河南山地区找金中的应用[J]. 物探与化探, 2021, 45(4):923-932.
[27] Zhao J C, Fan Y, Lei Y L, et al. The application of tectonogeochemical cuttings survey to gold prospecting in Nanshan area of Danghe,Gansu Province[J]. Geophysical and Geochemical Exploration, 2021, 45(4):923-932.
[28] 喻劲松, 刘华忠, 宋殿兰, 等. 应用机动浅钻的地球化学勘查方法技术研究成果报告[R]. 2012.
[28] Yu J S, Liu H Z, Song D L, et al. Report on research results of geochemical exploration method and technology using motorized shallow drilling[R]. 2012.
[29] 成秋明, 张生元, 左仁广, 等. 多重分形滤波方法和地球化学信息提取技术研究与进展[J]. 地学前缘, 2009, 16(2):185-198.
[29] Cheng Q M, Zhang S Y, Zuo R G, et al. Progress of multifractal filtering techniques and their applications in geochemical information extraction[J]. Earth Science Frontiers, 2009, 16(2):185-198.
[30] 高艳芳, 柳青青, 王学求, 等. 地球化学勘查数据一体化处理系统(Geochem Studio 3.6)用户指南[R]. 2019.
[30] Gao Y F, Liu Q Q, Wang X Q, et al. User guide of geochemical exploration data integrated processing system (Geochem Studio 3.6)[R]. 2019.
[31] 樊新祥, 李省晔, 赵吉昌, 等. 甘肃北山双井子地区1:25000水系沉积物测量地球化学特征及找矿预测[J]. 科学技术与工程, 2022, 22(36):15938-15951.
[31] Fan X X, Li S Y, Zhao J C, et al. Geochemical characteristics and prospecting prediction of 1:25000 stream sediments in Shuangjingzi area,Beishan,Gansu Province[J]. Science Technology and Engineering, 2022, 22(36):15938-15951.
[32] 吴锡生. 化探数据处理方法[M]. 北京: 地质出版社, 1993:38-39.
[32] Wu X S. Geochemical data processing method[M]. Beijing: Geological Publishing House, 1993:38-39.
[33] 赵鹏大. 定量地质学理论与方法[M]. 北京: 地质出版社, 2004:178-180.
[33] Zhao P D. Theory and method of quantitative geology[M]. Beijing: Geological Publishing House, 2004:178-180.
[34] 向东进. 实用多元统计分析[M]. 武汉: 中国地质大学出版社, 2005:157-171.
[34] Xiang D J. Practical multivariate statistical analysis[M]. Wuhan: China University of Geosciences Press, 2005:157-171.
[35] 薛薇. SPSS计分析方法及应用[M]. 北京: 电子工业出版社, 2004:9-12.
[35] Xue W. SPSS analysis method and application[M]. Beijing: Electronic Industry Press, 2004:9-12.
[36] 王磊, 杨建国, 王小红, 等. 甘肃北山拾金坡—南金滩地区水系沉积物地球化学特征及找矿远景[J]. 中国地质, 2016, 43(2):585-593.
[36] Wang L, Yang J G, Wang X H, et al. Geochemical characteristics of stream sediments and prospecting direction in the Shijinpo-Nanjintan area of Beishan,Gansu Province[J]. Geology in China, 2016, 43(2):585-593.
[1] 雷自强, 陈杰, 陈世明, 方成豪, 杨镇熙, 王振. 岩屑地球化学测量在甘肃北山干旱戈壁荒漠区的找矿效果——以三白墩地区金砷矿的发现为例[J]. 物探与化探, 2022, 46(3): 585-596.
[2] 赵吉昌, 范应, 雷一兰, 姚宾宾. 构造地球化学岩屑测量在甘肃党河南山地区找金中的应用[J]. 物探与化探, 2021, 45(4): 923-932.
[3] 王嘉怡, 郝立波, 赵新运, 马成有, 陆继龙, 赵玉岩, 魏俏巧. 基于土壤化学成分的基岩岩石类型识别[J]. 物探与化探, 2018, 42(6): 1180-1185.
[4] 徐建宇. 地震方法在城市浅覆盖区活断层调查中的应用[J]. 物探与化探, 2016, 40(6): 1103-1107.
[5] 张鹏, 张寿庭, 邹灏, 方乙, 曹华文, 高永璋, 马永非. 便携式X荧光分析仪在萤石矿勘查中的应用[J]. 物探与化探, 2012, 36(5): 718-722.
[6] 王文忠, 马国林, 刘继东. 瞬变电磁视纵向电导成像法在寻找深部隐伏金属矿中的应用[J]. 物探与化探, 2011, 35(4): 473-476.
[7] 杨帆, 孔牧, 刘华忠, 岑况, 徐仁廷, 宋云涛, 王成文, 郝志红. 北山干旱荒漠戈壁残山景观1∶5万地球化学勘查方法技术的选择[J]. 物探与化探, 2011, 35(3): 308-312.
[8] 石战结, 田钢, 薛建, 徐白山, 曾昭发, 赵维俊. 地震与电法技术在浅覆盖区区域地质调查中的应用[J]. 物探与化探, 2003, 27(3): 194-196,201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com