Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (4): 835-845    DOI: 10.11720/wtyht.2021.1099
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
胶东海域金矿床元素富集贫化特征及深部预测
张亮亮1,2(), 朱立新3, 马生明1(), 林少一2, 戴长国2, 周明岭2, 霍光2, 徐忠华2, 席明杰1, 张涛2
1.中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
2.山东省第六地质矿产勘查院,山东 威海 264200
3.中国地质调查局,北京 100037
Elements enrichment and dilution characteristics and deep metallogenic prognosis in the Haiyu gold deposit, Jiaodong Peninsula
ZHANG Liang-Liang1,2(), ZHU Li-Xin3, MA Sheng-Ming1(), LIN Shao-Yi2, DAI Chang-Guo2, ZHOU Ming-Ling2, HUO Guang2, XU Zhong-Hua2, XI Ming-Jie1, ZHANG Tao2
1. Institute of Geophysics and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
2. No. 6 Institute of Geology and Mineral Resources, Weihai 264200,China
3. China Geological Survey, Beijing 100037, China
全文: PDF(7770 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

三山岛海域金矿床是近年来发现的超大型金矿床,已探明金储量470 t、平均品位4.30×10-6,属于典型的焦家式金矿床。本文选择海域金矿床为研究对象,开展钻孔岩石测量,结果发现,在赋矿构造蚀变带内,Au、Cu、Pb、Zn、Ag、As、Sb、Cd、Bi、S、Fe2O3等发生富集,Na2O、Ba、Sr则发生贫化。在此基础上,按照矿源岩和构造蚀变带总结了地球化学勘查标志,其中,矿源岩的典型地球化学勘查标志是富S和Au,即矿源岩内出现S、Au的正异常;构造蚀变带的典型地球化学勘查标志是富S、Au、Ag、Bi,贫Na2O、CaO,即构造蚀变带内S、Au、Ag、Bi呈现正异常,Na2O、CaO呈现负异常。利用上述元素及其异常,构建了海域金矿床矿致异常模式,为该矿床外围和深部金矿勘查提供了有益借鉴,提出了海域金矿成矿带主体深部可能沿ZK2403、ZK3008、ZK3814钻孔连线呈NEE向展布。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张亮亮
朱立新
马生明
林少一
戴长国
周明岭
霍光
徐忠华
席明杰
张涛
关键词 海域金矿岩石地球化学测量富集贫化矿致异常模式    
Abstract

The Haiyu gold deposit, as a superlarge gold deposit with gold reserves of 470 t and average grade of 4.30×10-6, is a typical Jiaojia-type gold deposit. The authors carried out the rock geochemical survey by the samples from drillholes, and detected the enrichment of Au, Cu, Pb, Zn, Ag, As, Sb, Cd, Bi, S and Fe2O3 and the depletion of Na2O, Ba and Sr in the ore-hosting tectonic alteration zone. The authors systematically summarized the geochemical marks used for exploration. The enrichment of S and Au, or called the positive S and Au anomalies, is the typical geochemical mark of the source rock. The enrichment of S, Au, Ag and Bi and the depletion of Na2O and CaO are typical geochemical marks of the tectonic alteration zone. Based on the above elements and their anomalies, the authors constructed the ore-induced anomaly model of the Haiyu gold deposit, which provides a useful reference for the exploration of the peripheral and deep-seated gold deposits. It is proposed that the main gold orebodies of the ore-forming zone of the sea field may be along ZK2403, ZK3008, and ZK3814 boreholes spread in NEE direction.

Key wordsHaiyu gold deposit    rock geochemical survey    enrichment or depletion    ore-induced anomaly model
收稿日期: 2020-02-29      出版日期: 2021-08-20
:  P632  
基金资助:国家重点研发计划项目(2018YFE0208300);中国地质调查局地质调查项目“矿集区矿产调查及深部找矿预测”(DD20190571);国家科技支撑计划项目“胶西北金矿深部找矿地球化学方法与集成与示范”(2014BAB05B00)
通讯作者: 马生明
作者简介: 张亮亮(1987-),男,博士研究生,地球化学专业勘查地球化学方向。Email: 15634333042@163.com
引用本文:   
张亮亮, 朱立新, 马生明, 林少一, 戴长国, 周明岭, 霍光, 徐忠华, 席明杰, 张涛. 胶东海域金矿床元素富集贫化特征及深部预测[J]. 物探与化探, 2021, 45(4): 835-845.
ZHANG Liang-Liang, ZHU Li-Xin, MA Sheng-Ming, LIN Shao-Yi, DAI Chang-Guo, ZHOU Ming-Ling, HUO Guang, XU Zhong-Hua, XI Ming-Jie, ZHANG Tao. Elements enrichment and dilution characteristics and deep metallogenic prognosis in the Haiyu gold deposit, Jiaodong Peninsula. Geophysical and Geochemical Exploration, 2021, 45(4): 835-845.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1099      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I4/835
Fig.1  胶东半岛区域地质和金矿分布简图(据宋明春等[20]修编 )
1—第四系;2—新近系、古近系;3—白垩系;4—古-新元古界;5—含榴辉岩的新元古代花岗质片麻岩;6—太古宙花岗-绿岩带;7—白垩纪崂山花岗岩;8—白垩纪伟德山花岗岩;9—白垩纪郭家岭花岗闪长岩;10—侏罗纪花岗岩;11—三叠纪花岗岩;12—整合/不整合地质界限;13—断层;14—以往探明的浅部金矿床位置(直径由大到小分别表示资源储量≥100 t的超大型金矿床、资源储量 20~100 t的大型金矿床、资源储量5~20 t的中型金矿床和资源储量<5 t的小型金矿床);15—新探明的深部金矿床位置(直径大小的意义同图例14);16—蚀变岩型金矿/石英脉型金矿/其他类型金矿;17—三山岛北部海域金矿位置
Fig.2  海域金矿蚀变岩及金矿物显微特征
a—钾化,见钾长石包裹斜长石;b—主裂面上盘绢英岩化,可见绢云母面状蚀变交代钾长石、斜长石,硅化体现为波状消光石英;c—黄铁绢英岩化碎裂岩,斜长石、钾长石均蚀变为绢云母和石英,含金矿铁矿呈脉状分布;d—黄铁绢英岩化碎裂岩中的星散状黄铁矿;e—金矿物以角砾状包体金和线状晶隙金形态分布于黄铁矿中;f—金矿物以椭圆状包体嵌布在黄铁矿中;Kf—钾长石;Pl—斜长石;Qz—石英;Ser—绢云母;Py—黄铁矿;Au—金矿物
指标 测试方法 检出限 单位 一级标准物质合格率/% 重复样合格率/%
Au 无火焰原子吸收光谱法(AAN)
火焰原子吸收光谱法(AAS)
0.2
100
10-9 100 95.6
Ag 等离子体质谱法(ICP-MS) 20 10-9 100 97.9
As 氢化物—原子荧光光谱法(HG-AFS) 1 10-6 100 94.7
Ba 压片法—X射线荧光光谱法(XRF) 5 10-6 100 100
Bi 等离子体质谱法(ICP-MS) 0.05 10-6 100 97.9
Cd 等离子体质谱法(ICP-MS) 20 10-9 100 100
Cr 等离子体光谱法(ICP-AES) 2 10-6 100 97.9
Cu 等离子体质谱法(ICP-MS) 1 10-6 100 98.9
Ga 等离子体质谱法(ICP-MS) 2 10-6 100 100
Ge 氢化物—原子荧光光谱法(HG-AFS) 0.1 10-6 100 100
Mo 等离子体质谱法(ICP-MS) 0.2 10-6 100 95.7
Pb 等离子体质谱法(ICP-MS) 2 10-6 100 92.6
S 压片法—X射线荧光光谱法(XRF) 50 10-6 100 100
Sb 等离子体质谱法(ICP-MS) 0.05 10-6 100 96.8
Sr 压片法—X射线荧光光谱法(XRF) 5 10-6 100 100
Ti 压片法—X射线荧光光谱法(XRF) 10 10-6 100 100
W 等离子体质谱法(ICP-MS) 0.2 10-6 100 98.9
Zn 等离子体质谱法(ICP-MS) 2 10-6 100 96.8
Zr 压片法—X射线荧光光谱法(XRF) 2 10-6 100 100
SiO2 压片法—X射线荧光光谱法(XRF) 0.1 % 100 100
Al2O3 等离子体光谱法(ICP-AES) 0.1 % 100 98.9
TFe2O3 压片法—X射线荧光光谱法(XRF) 0.1 % 100 98.9
MgO 压片法—X射线荧光光谱法(XRF) 0.05 % 100 100
CaO 等离子体光谱法(ICP-AES) 0.05 % 100 100
Na2O 等离子体光谱法(ICP-AES) 0.05 % 100 98.9
K2O 等离子体光谱法(ICP-AES) 0.05 % 100 100
Table 1  样品测试方法及质量监控结果统计
指标 变辉长岩
(n=61)
二长花岗岩
(n=316)
上盘花岗岩
(n=105)
构造蚀变带
(n=160)
下盘花岗岩
(n=102)
花岗闪长岩
(n=21)
C q C q C q C q C q C q
Au 4.0 4.7 23 46 21 42 3037 6074 166 333 7.0 10
Ag 210 3.1 390 6.5 840 14 3900 65 1300 21 87 1.4
As 8.5 5.7 8.0 6.7 17 14 69 58 26 21 1.0 0.8
Cd 280 2.5 710 12.5 1500 27 690 12 1000 18 48 0.6
Cu 46 0.8 9.12 1.7 14 2.5 87 16 32 5.8 4.3 0.2
Ga 21 1.1 21.43 1.2 20 1.1 20 1.1 21 1.1 20 1.1
Ge 1.31 1.2 1.2 1.0 1.2 0.96 1.4 1.1 1.1 0.9 0.78 0.7
Pb 26 1.7 83 3.2 533 20 473 18 435 16.7 22 1.4
Sb 0.55 3.4 0.48 3.7 0.75 5.8 0.88 6.7 0.73 5.6 0.24 1.7
Zn 109 1.0 156 3.9 353 8.8 177 4.4 291 7.3 24 0.4
Cr 111 0.5 24 3.6 24 3.6 43 6.4 18 2.7 8.8 0.2
Ti 3178 0.4 774 0.6 838 0.61 1047 0.8 840 0.6 915 0.3
Ba 776 1.7 1098 1.6 1154 1.70 478 0.7 1081 1.6 1640 1.8
Sr 363 0.6 376 1.7 332 1.51 113 0.5 293 1.3 659 1.5
Zr 91 0.8 60 0.4 69 0.44 84 0.5 75 0.5 75 0.4
Mo 4.60 10 2.0 2.8 0.96 1.37 1.2 1.6 1.0 1.4 0.72 1.5
W 1.24 2.5 1.2 1.2 1.4 1.42 4 4.3 2.3 2.3 0.85 2.2
Bi 0.15 1.6 0.29 1.2 0.12 0.49 8.2 34 0.73 3.0 0.06 0.5
S 701 1.4 382 4.2 632 7.0 6573 73 2727 30 53 0.2
SiO2 58.49 1.20 65.15 0.90 63.86 0.88 59.80 0.83 69.95 0.97 64.31 0.98
Al2O3 14.49 0.89 13.89 1.00 13.83 1.00 13.08 0.95 15.11 1.09 14.40 0.95
TFe2O3 6.16 0.64 1.34 0.59 1.78 0.78 4.76 2.08 2.58 1.13 0.71 0.15
CaO 2.64 0.27 1.73 1.29 1.83 1.36 1.22 0.91 1.90 1.42 1.88 0.59
MgO 2.40 0.31 0.58 0.90 0.52 0.81 0.76 1.19 0.21 0.33 0.26 0.13
Na2O 2.78 1.11 3.44 0.97 2.49 0.70 0.41 0.12 3.53 1.00 4.54 1.23
K2O 3.13 3.23 4.05 0.93 4.31 0.99 4.31 0.99 4.40 1.01 3.38 1.16
Table 2  海域金矿不同地质单元中元素含量与富集系数统计
Fig.3  海域金矿30勘探线钻孔岩石测量元素异常分布
Fig.4  海域金矿床致矿异常模式图示
Fig.5  海域金矿深部预测成矿有利地段图示
[1] 宋明春. 胶东金矿深部找矿主要成果和关键理论技术进展[J]. 地质通报, 2015,34(9):1758-1771.
[1] Song M C. The main achievements and key theory and methods of deep-seated prospecting in the Jiaodong gold concentration area,Shandong Province[J]. Geological Bulletin of China, 2015,34(9):1758-1771.
[2] Li J W, Vasconcelos P M, Zhang J, et al. 40Ar/39Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong gold Province, eastern China [J]. Journal of Geology, 2003,111:741-751.
[3] Li J W, Vasconcelos P, Zhou M F, et al. Geochronology of the Pengjiakuang and Rushan Gold deposits, eastern Jiaodong gold Province, northeastern China: Implications for regional mineralization and geodynamic setting[J]. Economic Geology, 2006,101:1023-1038.
[4] Mao J W, Wang Y T, Li H M, et al. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: Evidence from D-O-C-S isotope systematics[J]. Ore Geology Reviews, 2008,33(3):361-381.
[5] 钱建平, 陈宏毅, 孙涛, 等. 山东招远前孙家金矿床地质和元素地球化学研究[J]. 地球化学, 2010,39(3):213-228.
[5] Qian J P, Chen H Y, Sun T, et al. Study on geology and element geochemistry of Qiansunjia gold mine in Zhaoyuan,Shandong,eastern China[J]. Geochimica, 2010,39(3):213-228.
[6] 翟裕生, 姚书振, 蔡克勤 .矿床学( 第三版)[M]. 北京: 地质出版社, 2011.
[6] Zhai Y S, Yao S Z, Cai K Q. Mineral deposits(third edition)[M]. Beijing: Geological Publishing House, 2011.
[7] Zhai M G, Santosh M. Metallogeny of the North China Craton: Link with secular changes in the evolving Earth[J]. Gondwana Research, 2013,24(1):275-297.
[8] Goldfarb R J, Santosh M. The dilemma of the Jiaodong gold deposits: Are they unique?[J]. Geoscience Frontiers, 2014,5(2):139-153.
[9] 毛景文, 李厚民, 王义天, 等. 地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据[J]. 地质学报, 2005,79(6):839-857.
[9] Mao J W, Li H M, Wang Y T, et al. The relationship between mantle-derived fluid and gold ore-formation in the eastern Shandong peninsula: Evidences from D-O-C-S isotopes[J]. Acta Geologica Sinica, 2005,79(6):839-857.
[10] 杨进辉, 刘文军, 翟明国. 胶东大型黄金矿集区及大规模成矿作用[J]. 中国科学:D辑, 2001,31(7):545-552.
[10] Yang J H, Liu W J, Zhai M G. Large-scale gold mining area in Jiaodong large-scale metallogenesis[J]. Science in China:Series D, 2001,31(7):545-552.
[11] 翟明国, 范宏瑞, 杨进辉, 等. 非造山带型金矿—胶东型金矿的陆内成矿作用[J]. 地学前缘, 2004,11(1):85-98.
[11] Zhai M G, Fan H R, Yang J H, et al. Large-scale cluster of gold deposits in east shandong:anorogenic metallogenesis[J]. Earth Science Frontiers, 2004,11(1):85-98.
[12] Kerrich R, Goldfarb R, Groves D, et al. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces[J]. Science in China, 2000,43(s1):1-68.
[13] 马生明, 朱立新, 刘崇民, 等. 斑岩型Cu(Mo)矿床中微量元素富集贫化规律研究[J]. 地球学报, 2009,30(6):821-830.
[13] Ma S M, Zhu L X, Liu C M, et al. A study of the enrichment and depletion regularity of trace elements in porphyry Cu (Mo) deposits[J]. Acta Geoscientica Sinica, 2009,30(6):821-830.
[14] 梁胜跃, 马生明, 朱立新, 等. 乌努格吐山斑岩型铜钼矿床地球化学异常结构研究[J]. 物探与化探, 2010,34(2):127-133.
[14] Liang S Y, Ma S M, Zhu L X, et al. Geochemical anomaly structure of the Wunugetushan porphyry copper and molybdenum deposit[J]. Geophysical and Geochemical Exploration, 2010,34(2):127-133.
[15] 孙跃, 马生明, 刘显凡, 等. 浙江大岭口银铅锌矿床异常结构及深部矿体预测方法研究[J]. 矿产勘查, 2011,2(3):272-278.
[15] Sun Y, Ma S M, Liu X F, et al. A study of the structure of geochemical anomaly and prediction of deep ore body in Dalingkou Ag-Pb-Zn deposit,Zhejiang province[J]. Mineral Exploration, 2011,2(3):272-278.
[16] 马生明, 朱立新, 韩方法, 等. 胶西北焦家式金矿控矿构造蚀变带的地球化学标志[J]. 地学前缘, 2017,24(2):64-72.
[16] Ma S M, Zhu L X, Han F F, et al. Geochemical marks of the ore-controlling tectonic alteration zone in the Jiaojia-type gold deposit, Northwestern Jiaodong Peninsula[J]. Geoscience Frontiers, 2017,24(2):64-72.
[17] 马生明, 朱立新, 刘海良, 等. 甘肃北山辉铜山铜矿地球化学异常结构研究[J]. 地球学报, 2011,32(4):405-412.
[17] Ma S M, Zhu L X, Liu H L, et al. A study of geochemical anomaly structure of the Huitongshan copper deposit in Beishan area, Gansu Province[J]. Acta Geoscientica Sinica, 2011,32(4):405-412.
[18] 宋明春. 山东省大地构造单元组成、背景和演化[J]. 地质调查与研究, 2008,31(3):165-175.
[18] Song M C. The composing,setting and evolution of tectonic units in Shandong Province[J]. Geological Survey and Research, 2008,31(3):165-175.
[19] 李士先, 刘长春, 安郁宏, 等. 胶东金矿地质[M]. 北京: 地质出版社, 2007.
[19] Li S X, Liu C C, An Y H, et al. Jiaodong gold deposits geology[M]. Beijing: Geological Publishing House, 2007.
[20] 宋明春, 崔书学, 伊丕厚, 等. 山东省胶西北金矿集中区深部大型—超大型金矿找矿与成矿模式[M]. 北京: 地质出版社, 2010.
[20] Song M C, Cui S X, Yi P H, et al. Prospecting and metallogenic model of deep large-ultra-large gold deposits in Jiaodong Northwest gold deposit concentration area, Shandong Province [M]. Beijing: Geological Publishing House, 2010.
[21] 张军进, 丁正江, 刘殿浩, 等. 山东莱州三山岛北部海域超大型金矿勘查实践与找矿成果[J]. 黄金科学技术, 2016,24(1):1-10.
[21] Zhang J J, Ding Z J, Liu D H, et al. Exploration practice and prospecting results of super-large gold mine of Sanshandao northern sea area in Laizhou City,Shandong Province[J]. Gold Science and Technology, 2016,24(1):1-10.
[22] 宋明春. 胶东三山岛北部海域超大型金矿床的发现及其构造岩浆背景[J]. 地质学报, 2015,89(2):365-383.
[22] Song M C. Discovery and tectonic-magmatic background of superlarge gold deposit in offshore of northern Sanshandao,Shandong Peninsula,China[J]. Acta Geologica Sinica, 2015,89(2):365-383.
[23] 张亮亮, 马生明, 朱立新, 等. 胶东焦家断裂带蚀变岩非镜像对称特征及其地质意义[J]. 大地构造与成矿学, 2020,44(2):276-288.
[23] Zhang L L, Ma S M, Zhu L X, et al. Non-mirrored symmetrical feature of altered rocks in the fault zone of Jiaojia, Jiaodong peninsula and its geological significance[J]. Geotectonica et Metallogenia, 2020,44(2):276-288.
[24] 鄢明才, 迟清华, 顾铁新, 等. 中国东部上地壳化学组成[J]. 中国科学:地球科学, 1997(3):193-199.
[24] Yan M C, Chi Q H, Gu T X, et al. Chemical composition of the upper crust in eastern China[J]. Science in China:Series D, 1997(3):193-199.
[25] 吕古贤. 胶东玲珑—焦家式金矿床矿源岩系(序)列研究[J]. 地球与环境, 2001,29(3):140-143.
[25] Lyu G X. Research on ore source series of the Linglong-Jiaojia-type gold deposits[J]. Geology-Geochemistry, 2001,29(3):140-143.
[26] 刘翠, 邓晋福, 李胜荣, 等. 胶东燕山期大型超大型金矿集区形成的壳幔结构探讨:来自致矿火成岩(组合)的约束[J]. 地学前缘, 2018,25(6):296-307.
[26] Liu C, Deng J F, Li S R, et al. Discussions on crust-mantle structure during the formation of Yanshanian of large-super large scale deposits in the Jiaodong gold ore district: Constraints from ore-forming igneous assemblage[J]. Earth Science Frontiers, 2018,25(6):296-307.
[27] 马生明, 朱立新, 苏磊, 等. 矿化剂元素硫(S)与成矿[J]. 地质学报, 2016,90(9):2427-2436.
[27] Ma S M, Zhu L X, Su L, et al. Mineralizing agent sulfur and metallogenic process[J]. Acta Geologica Sinica, 2016,90(9):2427-2436.
[28] 马生明, 朱立新, 张亮亮, 等. 关于胶西北金矿成矿地球化学机制的思考[J]. 物探与化探, 2019,43(5):925-931.
[28] Ma S M, Zhu L X, Zhang L L, et al. Thoughts on the geochemical mechanism of gold mineralization in the northwest Jiaodong gold province[J]. Geophysical and Geochemical Exploration, 2019,43(5):925-931.
[1] 吴卫国. 1:5万岩石构造地球化学测量在粤北一六矿田中的应用[J]. 物探与化探, 2018, 42(5): 866-872.
[2] 康明, 刘琛, 斯琴毕力格, 马祖飞. 内蒙古渣尔泰山地区西山湾羊场火山岩型银矿床的发现[J]. 物探与化探, 2013, 37(1): 11-16.
[3] 刘崇民, 李应桂, 史长义. 不同景观区的岩石地球化学勘查方法研究[J]. 物探与化探, 2002, 26(1): 23-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com