Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (4): 892-905    DOI: 10.11720/wtyht.2023.2625
  地质调查资源勘查 本期目录 | 过刊浏览 | 高级检索 |
构造原生晕在攻深找盲中的应用——以赣南银坑牛形坝铅锌金银矿床为例
陈伟1(), 谭友1, 曹正端1, 廖志权1, 张宁发1, 傅海晖2
1.江西省地质局 第七地质大队,江西 赣州 341000
2.江西润鹏矿业股份有限公司,江西 赣州 341000
Application of tectonic primary halos in the exploration of deep concealed ore bodies: A case study of the Niuxingba plumbum-zinc-gold-silver deposit in Yinkeng, southern Jiangxi
CHEN Wei1(), TAN You1, CAO Zheng-Duan1, LIAO Zhi-Quan1, ZHANG Ning-Fa1, FU Hai-Hui2
1. The Seventh Geological Brigade of Jiangxi Bureau of Geology, Ganzhou 341000, China
2. Jiangxi Runpeng Mining Co., Ltd. of Ganzhou, Ganzhou 341000, China
全文: PDF(8961 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

牛形坝铅锌金银矿床为南岭EW向成矿带与武夷山NNE向成矿带交汇处银坑矿田内新发现的一个严格受断裂构造控制的典型热液脉型矿床,矿体呈脉群状产出。为了预测该矿床V31号主矿带(体)的深部找矿潜力,在对矿床地质特征分析的基础上,系统开展了矿床V31号主矿带(体)轴(垂)向、横向和纵向构造原生晕地球化学特征及分带研究,建立了构造原生晕轴向分带序列和矿床构造原生晕地质—地球化学模型,并运用多元统计方法验证了模型的正确性、合理性、可靠性。构造原生晕地质—地球化学模型表明:牛形坝铅锌金银矿床前缘晕指示元素为F;近矿晕指示元素一类为与金矿化有关的As-Au元素组合,位于矿体中上部,一类为与铅锌银矿化有关的Hg-Zn-Pb-Ag-Cu-Bi-Sb元素组合,位于矿体中部;尾晕指示元素为Mo-Cr-Co-Ni。前缘—近矿—尾晕三者异常中心轴向相距约200~300 m,具明显的“头尾晕共存”和“近矿晕折线拐点”特征,且往东出现中低温Pb、Zn、Ag、Au矿化向中高温Cu、Zn矿化转变,指示V31号主矿带(体)走向东侧伏,倾向往深部仍有较大延伸(至少可延伸至-200 m标高)或有盲矿体存在,经东部隐伏区深部钻探工程验证(367线最低见矿标高-165 m),表明V31号矿带(体)东部、深处有较大的增储潜力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈伟
谭友
曹正端
廖志权
张宁发
傅海晖
关键词 深部找矿构造原生晕成矿预测牛形坝铅锌金银矿床银坑赣南    
Abstract

The Niuxingba plumbum-zinc-gold-silver deposit (the Niuxingba deposit) occurs in the Yinkeng ore field at the intersection of the EW-trending Nanling metallogenic belt and the NNE-striking Wuyishan metallogenic belt. It is a typical hydrothermal vein deposit under the strict control of fault structures, with ore bodies occurring as vein groups. To predict the deep prospecting potential of the No. V31 major ore belt (body) of the Niuxingba deposit, this study systematically investigated the axial (vertical), transverse, and longitudinal geochemical characteristics and zoning of tectonic primary halos of the ore belt (body) based on the geological characteristics of the deposit. Then, this study determined the axial zoning sequence and the geological-geochemical model of tectonic primary halos. It was confirmed that this model was correct, reasonable, and reliable using the multivariate statistical method. The results of the geological-geochemical model show that: ① the front halo of the Niuxingba deposit has F as the indicator element; ② the near-ore halo has two types of indicator elements: the gold mineralization-related As-Au element association in the middle and upper parts of the ore body and the Pb-Zn-Ag mineralization-related Hg-Zn-Pb-Ag-Cu-Bi-Sb element association in the middle part of the ore body; ③ the rear halo has the Mo-Cr-Co-Ni element association as indicator elements; ④ the anomaly centers of the front, near-ore, and rear halos are about 200~300 m apart axially, suggesting significant coexistence of front and rear halos and the presence of inflection points of the near-ore halo broken line. Furthermore, the transformation of low-moderate-temperature Pb-Zn-Ag-Au mineralization into moderate-high-temperature Cu-Zn mineralization occurs eastward. These characteristics indicate that the No. V31 main ore belt (body) has a pitch direction of east and a large extension toward the deep part (to an elevation of -200 m at least), implying that blind ore bodies may occur. As verified by deep drilling in the eastern concealed area (the lowest ore-controlled elevation of the No. 367 survey line: -165 m), the eastern deep part of the No. V31 ore belt (body) has a high potential for increasing reserves.

Key wordsdeep prospecting    tectonic primary halo    metallogenic prediction    Niuxingba plumbum-zinc-gold-silver deposit    Yinkeng    southern Jiangxi
收稿日期: 2021-11-19      修回日期: 2023-03-24      出版日期: 2023-08-20
ZTFLH:  P632  
基金资助:国家重点研发计划项目(2016YFC0600208);江西省地质局青年科学技术带头人培养计划项目(2022JXDZKJRC03)
作者简介: 陈伟(1984-),男,江西泰和人,高级工程师,主要从事地质矿产勘查与地质科研工作。Email:342259356@qq.com
引用本文:   
陈伟, 谭友, 曹正端, 廖志权, 张宁发, 傅海晖. 构造原生晕在攻深找盲中的应用——以赣南银坑牛形坝铅锌金银矿床为例[J]. 物探与化探, 2023, 47(4): 892-905.
CHEN Wei, TAN You, CAO Zheng-Duan, LIAO Zhi-Quan, ZHANG Ning-Fa, FU Hai-Hui. Application of tectonic primary halos in the exploration of deep concealed ore bodies: A case study of the Niuxingba plumbum-zinc-gold-silver deposit in Yinkeng, southern Jiangxi. Geophysical and Geochemical Exploration, 2023, 47(4): 892-905.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.2625      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I4/892
Fig.1  江西银坑矿田地质矿产简图(b)及大地构造位置(a)
1—白垩系上统周田组;2—白垩系上统茅店组;3—侏罗系中统罗坳组;4—二叠系上统乐平组;5—二叠系中下统并层;6—石炭系上统大埔组;7—石炭系下统梓山组;8—泥盆系中-上统峡山群;9—寒武系下统牛角河组;10—震旦系上统老虎塘组;11—震旦系下统坝里组;12—南华系上统沙坝黄组;13—南华系下统上施组;14—青白口系上统库里组;15—白垩纪安山岩;16—侏罗纪第三阶段花岗岩;17—侏罗纪第二阶段花岗岩;18—侏罗纪第一阶段花岗岩;19—三叠纪花岗岩;20—志留纪第二阶段花岗岩;21—志留纪第一阶段花岗岩;22—志留纪第一阶段石英闪长岩;23—岩层产状;24—性质不明断层;25—推测断层;26—不整合界线;27—实测地质界线;28—铅锌矿;29—钨矿;30—金矿;31—银矿;32—锰矿;33—硫铁矿;34—银坑矿田范围
Fig.2  银坑牛形坝Pb-Zn-Au-Ag多金属矿床矿区地质简图
1—第四系全新-更新统;2—白垩系下统石溪组;3—侏罗系中统罗坳组;4—二叠系中统车头组;5—二叠系中统小江边组;6—二叠系中统栖霞组;7—南华系上统沙坝黄组;8—南华系下统上施组;9—青白口系上统库里组;10—闪长玢岩;11—花岗斑岩;12—花岗闪长斑岩;13—石英斑岩;14—隐爆角砾岩;15—断裂构造及产状;16—逆冲推覆构造;17—地质界线;18—铅锌金银矿体;19—硅质白云岩铅锌矿带;20—地层产状;21—勘探线及编号;22—已完工钻孔
Fig.3  银坑牛形坝矿区近东西向脉状矿带(体)A-A'综合地质剖面
1—侏罗系中统罗坳组;2—青白口系上统库里组;3—泥岩、细砂岩;4—板岩、变凝灰岩;5—花岗斑岩;6—石英斑岩;7—花岗闪长斑岩;8—矿带(体)及编号;9—断裂及编号;10—坑道;11—钻孔
参数 Hg As Au Sb Cu Pb Zn Ag W Sn Mo Bi Cr Co Ni Nb U F Mn
T 30 40 160 1 80 2560 2560 2 2 5 1 1 30 12 20 10 2 560 5120
2T 60 80 320 2 160 5120 5120 4 4 10 2 2 60 24 40 20 4 1120 10240
4T 120 160 640 4 320 10240 10240 8 8 20 4 4 120 48 80 40 8 2240 20480
Table 1  牛形坝矿区V31号矿带(体)原生晕元素浓度分带
Fig.4  牛形坝矿区V31号矿带(体)308号勘探线轴(垂)向原生晕元素浓度分带
1—青白口系上统库里组;2—燕山早期花岗斑岩;3—断裂构造;4—矿体及编号;5—坑道中段及标高;6—钻孔编号及孔深;7—采样点位置
元素 标准化系数 标准化后线金属量/(10-6·m) 分带指数
ZK3082 ZK3083 ZK3085 ZK3082 ZK3083 ZK3085
F 1 274138 108391 243277 0.116 0.027 0.040
Cr 10 64589 109003 243034 0.027 0.027 0.040
Pb 1 0 388269 473770 0 0.096 0.078
Zn 1 254561 672500 622247 0.107 0.167 0.102
Cu 10 83428 175270 124358 0.035 0.044 0.020
Ag 1000 329491 621910 547313 0.139 0.155 0.090
Au 10 650032 157066 246243 0.274 0.039 0.040
As 100 224395 321548 458528 0.095 0.080 0.075
Sb 1000 48776 342121 162737 0.021 0.085 0.027
Hg 10 66669 150252 218428 0.028 0.037 0.036
Co 100 30380 95564 168190 0.013 0.024 0.028
Ni 100 0 187325 319405 0 0.047 0.052
Mo 1000 126456 119470 349496 0.053 0.030 0.057
U 1000 0 40835 251349 0 0.010 0.041
Nb 100 0 0 255593 0 0 0.042
W 1000 71380 69339 364321 0.030 0.017 0.060
Sn 1000 0 126831 578425 0 0.032 0.095
Bi 1000 145978 338520 463804 0.062 0.084 0.076
总和 2370273 4024214 6090519
Table 2  牛形坝矿区308号勘探线轴(垂)向成矿成晕元素分带指数
Fig.5  牛形坝矿区V31号矿带(体)-20 m中段沿303号勘探线横向原生晕地质—地球化学剖面
1—粉砂质沉凝灰岩;2—凝灰质千枚岩;3—花岗闪长斑岩;4—铅锌金银矿体及编号;5—断裂破碎带;6—导线号及方位(坡角);7—产状;8—原生晕样品及编号;9—硅化
Fig.6  牛形坝矿区V31号矿体-20 m中段纵向原生晕地质—地球化学剖面
元素 Au Hg Ag Cu Pb Zn As Sb Bi W Mo Sn Cr Co Ni U Nb F
Au 1.00
Hg 0.16 1.00
Ag 0.19 0.50 1.00
Cu 0.13 0.53 0.85 1.00
Pb 0.19 0.14 0.26 0.10 1.00
Zn 0.31 0.76 0.64 0.63 0.35 1.00
As 0.39 0.31 0.39 0.25 0.19 0.47 1.00
Sb 0.01 0.40 0.82 0.94 0.05 0.46 0.22 1.00
Bi 0.04 0.06 0.52 0.15 -0.01 0.07 0.10 0.14 1.00
W 0.06 0.07 0.19 0.04 0.14 0.09 0.21 -0.02 0.24 1.00
Mo 0.02 0.07 0.02 0.00 0.01 0.04 0.10 -0.01 0.03 0.04 1.00
Sn 0.10 0.11 0.29 0.13 0.07 0.18 0.39 0.09 0.27 0.66 0.04 1.00
Cr -0.06 -0.04 -0.10 -0.10 -0.11 -0.17 -0.03 -0.08 0.03 -0.06 0.08 -0.10 1.00
Co -0.03 0.00 -0.04 -0.04 -0.07 -0.08 0.20 -0.03 0.01 -0.04 0.18 -0.06 0.61 1.00
Ni -0.03 0.02 -0.03 -0.03 -0.06 -0.06 0.21 -0.02 0.02 0.02 0.18 -0.01 0.53 0.92 1.00
U -0.06 -0.11 0.09 -0.04 -0.06 -0.17 -0.01 -0.02 0.34 0.42 0.04 0.38 0.04 -0.07 -0.04 1.00
Nb -0.18 -0.23 -0.14 -0.13 -0.11 -0.23 -0.21 -0.09 0.02 0.14 -0.15 0.07 0.03 -0.18 -0.19 0.52 1.00
F 0.06 0.04 0.01 -0.01 -0.01 -0.02 0.00 0.01 0.11 0.22 -0.07 0.16 -0.05 -0.07 -0.08 0.07 0.12 1.00
Table 3  牛形坝铅锌金银矿床成矿成晕元素相关系数矩阵
Fig.7  牛形坝铅锌金银矿床V31号矿带(体)成矿成晕R型聚类分析谱系
因子 因子组成 方差贡献
百分率/%
累积百
分率/%
F1 F1=0.696Hg+0.915Ag+0.852Cu+0.516Pb+0.829Zn+0.557As+0.761Sb 23.539 23.539
F2 F2=0.562Mo+0.857Co+0.824Ni+0.610Cr 14.524 38.063
F3 F3=0.452Bi+0.667W+0.623Sn+0.676U+0.521Nb 12.979 51.042
F4 F4=0.540Au+0.538As 9.080 60.123
F5 F5=0.639F 5.732 65.855
Pb因子模型 Pb=0.316F1-0.041F2-0.074F3+0.421F4-0.027F5
Zn因子模型 Zn=0.829F1+0.071F2-0.209F3+0.187F4+0.054F5
Au因子模型 Au=0.330F1+0.052F2-0.024F3+0.540F4+0.133F5
Ag因子模型 Ag=0.915F1-0.033F2+0.071F3-0.271F4-0.076F5
Table 4  极大方差旋转正交因子
Fig.8  牛形坝铅锌金银矿床构造原生晕地质—地球化学模型
1—粉砂质沉凝灰岩;2—凝灰质千枚岩;3—花岗闪长斑岩;4—硅化破碎带;5—矿体;6—近矿晕异常;7—前缘晕异常;8—尾晕异常
Fig.9  牛形坝矿区V31号矿体原生晕轴向分带模式示意
1—青白口系上统库里组;2—燕山早期花岗斑岩;3—矿体及编号;4—中段及标高;5—钻孔编号及孔深;6—已知/预测矿体;7—近矿晕异常;8—前缘晕异常;9—尾晕异常
Fig.10  牛形坝矿区367号勘探线剖面验证钻孔见矿情况
1—第四系;2—南华系下统上施组;3—燕山早期花岗闪长斑岩;4—矿体及编号
[1] 赵正, 陈毓川, 曾载淋, 等. 江西银坑W-Ag-Au多金属矿田成矿规律与找矿方向:兼论华南两个成矿系列叠加问题[J]. 地学前缘, 2017, 24(5):54-61.
doi: 10.13745/j.esf.yx.2017-1-6
[1] Zhao Z, Chen Y C, Zeng Z L, et al. Jiangxi Yinkeng W-Ag-Au ore field’s metallogenic regularity and prospecting direction:As well as the superposition of two metallogenic series in Southern China[J]. Earth Science Frontiers, 2017, 24(5):54-61.
[2] 郭娜欣, 陈毓川, 赵正, 等. 南岭科学钻中与两种岩浆岩有关的矿床成矿系列——年代学、地球化学、Hf同位素证据[J]. 地球学报, 2015, 36(6):742-754.
[2] Guo N X, Chen Y C, Zhao Z, et al. Metallogenic series related to two types of granitoid exposed in the Nanling scientific drill hole:Evidence from geochronology,geochemistry and Hf isotope[J]. Acta Geoscientica Sinica, 2015, 36(6):742-754.
[3] 毛景文, 谢桂青, 郭春丽, 等. 南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景[J]. 岩石学报, 2007, 23(10):2329-2338.
[3] Mao J W, Xie G Q, Guo C L, et al. Large-scale tungsten-tin mineralization in the Nanling region,South China:Metallogenic ages and corresponding geodynamic processes[J]. Acta Petrologica Sinica, 2007, 23(10):2329-2338.
[4] 赵正, 陈毓川, 陈郑辉, 等. 赣南银坑矿田高山角花岗闪长岩SHRIMP U-Pb定年及其与成矿的关系[J]. 岩矿测试, 2012, 31(3):536-542.
[4] Zhao Z, Chen Y C, Chen Z H, et al. SHRIMP U-Pb dating of the Gaoshanjiao granodiorite in the Yinkeng ore-field of the south Jiangxi region and its relations to mineralization[J]. Rock and Mineral Analysis, 2012, 31(3):536-542.
[5] 陈玉明, 王开天. 秘鲁胡斯塔铜矿原生晕地球化学特征及找矿效果[J]. 物探与化探, 2008, 32(2):126-130.
[5] Chen Y M, Wang K T. Lithogeo chemical characteristics of the Justa copper deposit in Peru and the ore-prospecting effect[J]. Geophysical and Geochemical Exploration, 2008, 32(2):126-130.
[6] 章永梅, 顾雪祥, 程文斌, 等. 内蒙古柳坝沟金矿床原生晕地球化学特征及深部成矿远景评价[J]. 地学前缘, 2010, 17(2):209-221.
[6] Zhang Y M, Gu X X, Cheng W B, et al. The geochemical features of primary halo and the evaluation of deep min-eralization prospect of Liubagou gold deposit,Inner Mongolia[J]. Earth Science Frontiers, 2010, 17(2):209-221.
[7] 刘光永, 戴茂昌, 祁进平, 等. 福建省紫金山铜金矿床原生晕地球化学特征及深部找矿前景[J]. 物探与化探, 2014, 38(3):434-440.
[7] Liu G Y, Dai M C, Qi J P, et al. Geochemical characteristics of primary halos and ore-search prospecting in the depth of the Zijinshan copper-gold deposit,Fujian province[J]. Geophysical and Geochemical Exploration, 2014, 38(3):434-440.
[8] 刘怀金, 杨永强, 孙引强, 等. 内蒙古边家大院铅锌银多金属矿床原生晕地球化学特征及深部找矿预测[J]. 地质找矿论丛, 2016, 31(2):245-252.
[8] Liu H J, Yang Y Q, Sun Y Q, et al. The primary halo characteristics of Bianjiadayuan Pb-Zn-Ag Polymetallic deposit in Inner Mongolia,China and ore prediction to depth[J]. Contributions to Geology and Mineral Resources Research, 2016, 31(2):245-252.
[9] 方贵聪, 陈郑辉, 陈毓川, 等. 石英脉型钨矿原生晕特征及深部成矿定位预测——以赣南淘锡坑钨矿11号脉为例[J]. 大地构造与成矿学, 2012, 36(3):406-412.
[9] Fang G C, Chen Z H, Chen Y C, et al. Characteristics of primary halos for quartz vein-type tungsten deposits and its implication in locating ore bodies at depth—A case study of the Taoxikeng deposit,Southern Jiangxi Province[J]. Geotectonica et Metallogenia, 2012, 36(3):406-412.
[10] 邵跃. 热液矿床岩石测量(原生晕法)找矿[M]. 北京: 地质出版社, 1997.
[10] Shao Y. Rock measurement (primary halo method) for prospecting of hydrothermal deposits[M]. Beijing: Geological Publishing House, 1997.
[11] 李厚民, 孙继东, 沈远超, 等. 东昆仑五龙沟金矿床Ⅲ矿段原生晕特征及模式[J]. 地质地球化学, 2001, 29(3):109-116.
[11] Li H M, Sun J D, Shen Y C, et al. Primary dispersion halo and its model in Ⅲ ore segment of wulonggou gold deposit east Kunlun mountains[J]. Geology-Geochemistry, 2001, 29(3):109-116.
[12] 李强, 孙继东, 杨兴科, 等. 新疆石英滩金矿床原生晕特征与隐伏矿预测[J]. 地质与勘探, 2005, 41(4):66-72.
[12] Li Q, Sun J D, Yang X K, et al. Character istic of primary halo and prediction of hidden orebody of shiyingtan gold deposit in Xin jiang[J]. Geology and Prospecting, 2005, 41(4):66-72.
[13] 戚长谋. 元素地球化学分类探讨[J]. 长春科技大学学报, 1991, 21(4):361-365.
[13] Qi C M. A discussion for geochemical classifi-cation of elements[J]. Journal of Changchun Universi-ty of Earth Science, 1991, 21(4):361-365.
[14] 李惠, 张文华, 刘宝林, 等. 中国主要类型金矿床的原生晕轴向分带序列研究及其应用准则[J]. 地质与勘探, 1999, 35(1):32-35.
[14] Li H, Zhang W H, Liu B L, et al. The study on axial zonality sequence of primary halo and some criteria for the application of this sequence for major types of gold deposits in China[J]. Geology and Prospecting, 1999, 35(1):32-35.
[1] 邰文星, 杨成富, 靳晓野, 邵云彬, 刘光富, 赵平, 王泽鹏, 谭礼金. 多维度化探异常研究在黔西南者相金矿床深部成矿预测中的应用[J]. 物探与化探, 2023, 47(4): 856-867.
[2] 游越新, 邓居智, 陈辉, 余辉, 高科宁. 综合物探方法在云南澜沧老厂多金属矿区深部找矿中的应用[J]. 物探与化探, 2023, 47(3): 638-647.
[3] 张瑾爱, 杨渊, 张林. 基于重力异常的镇安西部隐伏岩体空间分布规律研究[J]. 物探与化探, 2023, 47(3): 618-627.
[4] 杨波, 孙栋华. 东天山某环状熔融岩体航空电磁场特征及深部找矿研究[J]. 物探与化探, 2022, 46(4): 816-823.
[5] 魏从玲, 陈建立, 郭鹏. 基于MRAS证据权重模型的河南老湾地区金矿成矿预测[J]. 物探与化探, 2022, 46(3): 653-660.
[6] 史琪, 赵延朋, 迟占东, 葛华, 康铁锁, 李发兴, 魏翔宇, 卢见昆, 杨人毅. 老挝川圹省约俄锡多金属矿区沟系土壤地球化学特征及成矿预测[J]. 物探与化探, 2021, 45(4): 824-834.
[7] 陈小龙, 高坡, 程顺达, 王晓青, 罗可. 西藏帮浦东段—笛给铅锌矿区CSAMT异常特征与深部找矿预测[J]. 物探与化探, 2021, 45(2): 361-368.
[8] 刘成功, 景建恩, 金胜, 魏文博. 广西大厂矿田深部成矿预测及成矿机制研究[J]. 物探与化探, 2021, 45(2): 337-345.
[9] 屈利军, 王庆, 李波, 姚伟. 综合物探方法在湖南香花岭矿田三合圩矿区深部成矿规律研究中的应用[J]. 物探与化探, 2020, 44(6): 1313-1321.
[10] 宋豪, 张义蜜, 王万银. 河南内黄—浚县一带重磁异常与深部磁铁矿靶区预测研究[J]. 物探与化探, 2019, 43(6): 1191-1204.
[11] 张恩, 段明, 卢辉雄, 冯博, 曹秋义, 杨彦超. 林西—乌兰浩特地区铀成矿多源信息分析与成矿预测[J]. 物探与化探, 2019, 43(5): 948-957.
[12] 刘金兰, 赵斌, 王万银, 李建国, 周新鹏, 王云鹏. 南岭于都—赣县矿集区银坑示范区重磁资料探测花岗岩分布研究[J]. 物探与化探, 2019, 43(2): 223-233.
[13] 杨玉勤, 李兵海, 张翔. 利用航磁增强处理方法提取喇嘛苏铜矿及其外围弱磁异常[J]. 物探与化探, 2018, 42(6): 1173-1179.
[14] 徐春华, 秦新龙, 崔健, 陈振宁, 肖晓牛, 伍宵, 唐俊, 张雷. 钻孔测井资料在深部找矿预测中的应用——以福建梅仙镇峰岩—谢坑矿区找矿应用为例[J]. 物探与化探, 2018, 42(5): 873-881.
[15] 孔志召. 太行山中段寺沟岩体电性结构分析及深部成矿预测[J]. 物探与化探, 2018, 42(5): 882-888.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com