Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (4): 824-834    DOI: 10.11720/wtyht.2021.1268
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
老挝川圹省约俄锡多金属矿区沟系土壤地球化学特征及成矿预测
史琪(), 赵延朋, 迟占东, 葛华, 康铁锁, 李发兴, 魏翔宇, 卢见昆, 杨人毅
中国有色桂林矿产地质研究院有限公司,广西 桂林 541004
Valley system soils geochemical characteristics and metallogenic prediction of the Yue'e tin polymetallic mining area in Xieng Khouang Province, Laos
SHI Qi(), ZHAO Yan-Peng, CHI Zhan-Dong, GE Hua, KANG Tie-Suo, LI Fa-Xing, WEI Xiang-Yu, LU Jian-Kun, YANG Ren-Yi
China Nonferrous Metals (Guilin) Geology and Mining Co.,Ltd., Guilin 541004, China
全文: PDF(2758 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

老挝川圹省约俄锡多金属矿区位于老挝川圹—越南长山构造岩浆岩带西部,属长山晚古生代—中生代Cu-Fe-Au等多金属成矿带。通过1:2.5万沟系土壤地球化学测量工作,结合元素变化系数、浓集系数及相关性等特征进行分析,通过异常查证优选出多个靶区及远景区,在重点靶区根据化探异常特征推断矿化体位置,通过槽探及钻探等工程验证,取得了较好的找矿效果,认为该区具备铜、锡、铅、锌、钨、金等多金属找矿潜力,表明该方法在东南亚热带季风气候发育的厚覆盖区及大面积空白研究区,可快速圈定找矿靶区及远景区,为下一步勘查工作提供有效依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史琪
赵延朋
迟占东
葛华
康铁锁
李发兴
魏翔宇
卢见昆
杨人毅
关键词 长山构造沟系土壤地球化学异常特征成矿预测老挝    
Abstract

The tin-polymetallic mining area of the Yue'e ore district, XiengKhouang Province, Laos, is located in the west of the XiengKhouang Laos-Changshan Vietnam tectonic magmatic belt. Based on the 1:25 000 valley system soil geochemical survey, combined with an analysis of the characteristics of element variation coefficients and concentration coefficients, the correlation of elements, anomaly verification, and gold and other polymetallic ore prospecting potentials, the authors optimized multiple target and prospects areas. The position of the mineralized body was inferred based on geochemical exploration anomalies in key target areas. Through trench verification and drilling engineering verification, good prospecting results were achieved. The area is considered to have copper, tin, lead, zinc, tungsten. It is shown that this method can quickly delineate the prospecting target area and distant scenic area in the thick coverage area and extensive blank research area of Southeast Asian tropical monsoon climate, and can provide an effective basis for the next exploration work.

Key wordsChangshan structure    valley system soil geochemical survey    abnormal characteristics    metallogenic prognosis    Laos
收稿日期: 2020-05-18      修回日期: 2020-11-06      出版日期: 2021-08-20
ZTFLH:  P632  
基金资助:中国有色集团科技计划项目“中国有色矿业集团矿山资源现状调查与找矿潜力分析”(2019KJJH02);中国有色桂林矿产地质研究院有限公司科技基金项目“中色集团矿山企业可持续发展综合分析研究”(KDY2019004-1)
作者简介: 史琪(1989-),男,工程师,主要从事地质找矿及地球化学调查等工作。Email: 806873135@qq.com
引用本文:   
史琪, 赵延朋, 迟占东, 葛华, 康铁锁, 李发兴, 魏翔宇, 卢见昆, 杨人毅. 老挝川圹省约俄锡多金属矿区沟系土壤地球化学特征及成矿预测[J]. 物探与化探, 2021, 45(4): 824-834.
SHI Qi, ZHAO Yan-Peng, CHI Zhan-Dong, GE Hua, KANG Tie-Suo, LI Fa-Xing, WEI Xiang-Yu, LU Jian-Kun, YANG Ren-Yi. Valley system soils geochemical characteristics and metallogenic prediction of the Yue'e tin polymetallic mining area in Xieng Khouang Province, Laos. Geophysical and Geochemical Exploration, 2021, 45(4): 824-834.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1268      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I4/824
Fig.1  约俄铜多金属矿区位置示意
1—昌都-兰坪-思茅陆块墨江-绿春华力西-印支褶皱带;11—黑水河印支裂谷带;Ⅰ2—兰坪-思茅-南部中生代凹陷带;Ⅱ1—东印支陆块马江-桑怒华力西-印支岛弧带;Ⅱ2—琅勃拉邦华力西褶皱带;Ⅱ3—万象(盆地)-昆嵩(陆核)地块;Ⅱ4—川圹-长山华力西褶皱带;①—元江-红河断裂;②—哀牢山-黑水河断裂;③—阿墨江-马江缝合带;④—奠边府-程逸缝合带;⑤—普雷山-孟梅断裂;⑥—兰江断裂;⑦—川圹-长山断裂
Fig.2  老挝川圹省约俄矿区沟系布点及地质简图
参数 Ag As Au Bi Co Cr Cu Hg Mo Ni Pb Sb Sn W Zn
原始数据 平均值Cf1 0.091 15.40 2.13 0.52 15.10 77.70 27.90 97.40 0.79 34.60 28.00 1.79 4.90 3.66 77.50
最小值 0.020 0.80 0.43 0.03 1.00 4.50 1.90 8.00 0.27 2.40 1.00 0.08 0.80 0.30 2.70
最大值 0.290 >1000 145 20.20 89.40 363 475.30 >2000 10.57 239 589 40.83 400 64.70 2000
标准离差 0.067 34.10 2.82 0.52 7.50 38.80 15.40 212.19 0.61 22.60 21.10 3.00 8.40 3.93 75.70
变异系数Cv1 0.74 2.21 1.32 1.00 0.50 0.50 0.55 2.18 0.77 0.65 0.75 1.68 1.71 1.07 0.98
处理后数据 平均值 0.078 6.50 1.87 0.45 14.80 73.40 26.40 50.82 0.65 30.40 25.70 0.89 4.00 2.46 65.10
最小值 0.020 0.80 0.43 0.05 1.00 4.50 1.90 8.00 0.27 2.40 6.50 0.08 0.90 0.49 2.70
最大值 0.160 16.50 4.15 0.86 35.10 161 56.40 122.28 1.49 70.80 45.10 1.85 7.10 4.43 137
标准离差 0.027 3.30 0.76 0.14 6.80 29.40 10.00 23.84 0.28 13.50 6.50 0.32 1.10 0.66 24.00
变异系数Cv2 0.35 0.51 0.41 0.31 0.46 0.40 0.38 0.47 0.43 0.44 0.25 0.36 0.28 0.27 0.37
异常下限 0.132 13.20 3.39 0.72 28.30 132.30 46.40 98.49 1.21 57.30 38.70 1.53 6.10 3.77 113.20
浓集系数(Cf1/Cf2) 1.14 1.54 1.52 1.73 1.16 1.20 1.16 2.44 0.99 1.33 1.22 2.24 1.96 2.03 1.14
离散程度(Cv1/Cv2) 2.13 4.36 3.25 3.21 1.08 1.25 1.46 4.64 1.79 1.47 2.98 4.66 6.23 4.00 2.65
中国土壤Cf2[27] 0.08 10.00 1.40 0.30 13.00 65.00 24.00 40.00 0.80 26.00 23.00 0.80 2.50 1.80 68.00
Table 1  元素含量参数特征
Fig.3  元素分异特征
元素 Ag As Au Bi Co Cr Cu Hg Mo Ni Pb Sb Sn W Zn
Ag 1.000
As 0.355 1.000
Au 0.166 0.079 1.000
Bi 0.337 0.409 0.158 1.000
Co 0.192 0.123 0.165 0.156 1.000
Cr 0.254 0.128 0.145 0.061 0.516 1.000
Cu 0.340 0.129 0.287 0.361 0.480 0.408 1.000
Hg 0.220 0.516 0.086 0.035 0.129 0.285 0.068 1.000
Mo 0.216 0.500 0.097 0.186 0.197 0.285 0.219 0.355 1.000
Ni 0.449 0.235 0.165 0.113 0.577 0.855 0.447 0.338 0.351 1.000
Pb 0.445 0.159 0.131 0.204 0.298 0.231 0.211 0.131 0.188 0.312 1.000
Sb 0.350 0.656 0.134 0.129 0.168 0.362 0.127 0.725 0.487 0.459 0.268 1.000
Sn 0.300 0.370 0.086 0.730 0.030 -0.014 0.250 0.007 0.155 0.024 0.155 0.078 1.000
W 0.254 0.280 0.087 0.129 0.077 0.364 0.099 0.292 0.274 0.399 0.177 0.453 0.079 1.000
Zn 0.531 0.249 0.122 0.231 0.355 0.465 0.279 0.261 0.285 0.590 0.774 0.367 0.182 0.302 1.000
Table 2  土壤地球化学数据相关系数矩阵
Fig.4  老挝川圹省约俄矿区组合异常
Fig.5  A区综合异常剖析
1—第四系;2—二叠系Khang Khai组;3—石炭-二叠系Nong Het组;4—Ban Lao复式岩体;5—铜矿体;6—断层及编号
Fig.6  A区13线剖面
1—第四系;2—二叠系二叠系Khang Khai组;3—矽卡岩化蚀变带;4—黑云母花岗闪长岩;5—铜矿体(w(Cu)≥0.2%);6—铜矿化体(w(Cu)=0.1%~0.2%);7—施工钻孔及编号;8—设计钻孔及编号
Fig.7  B区综合异常剖析
1—二叠系Khang Khai组;2—石炭-二叠系Nong Het组;3—Ban Lao复式岩体;4—Sn矿体及编号;5—断层及编号;6—B找矿靶区范围
Fig.8  B区00线剖面
1—第四系;2—二叠系Khang Khai组;3—破碎蚀变矿化带;4—锡多金属矿体(w(Sn)≥0.2%);5—锡多金属矿化体(w(Sn)=0.1%~0.2%);6—探槽及编号;7—施工钻孔及方位;8—已施工钻孔;9—设计钻孔
蚀变矿(化)
体编号
矿(化)体规模 矿种 矿(化)体产状 含量 Sn平均含量
长/m 控制延深
/m
平均厚度
/m
主矿种 伴生矿种 倾向
/(°)
倾角
/(°)
B-Ⅰ >500 8 6 Sn Zn、Ag、
Co、Bi
75 75~85 Sn:0.16~7.23;Zn:0.23~0.82;
Ag:47.3~271;
Co:0.43~0.55;Bi:0.01~0.13
1.05
B-Ⅱ-1 50~100 2 4 Sn Bi 100 55~75 Sn:0.11~1.20;
Bi:0.019~0.025
0.77
B-Ⅱ-2 50~100 2 4 Sn Bi 90~100 55~75 Sn:0.13~0.44;
Bi:0.01~0.023
0.26
B-Ⅱ-3 >180 125 6 Sn Ag、Bi 90~100 75~85 Sn:0.21~4.58;Bi:0.01~0.051;
Ag:2.29~16.23
0.80
B-Ⅲ-1 >500 10 8 Sn Pb、Zn、
Bi、Ag
90~100 70~85 Sn:0.10~1.80;Pb:0.53~1.70;
Zn: 0.49~0.72;Ag:4.09~167;
Bi:0.01~0.068
0.42
B-Ⅲ-2 100~150 10 4 Sn Pb、Zn、
Bi、Ag
90~100 70~85 Sn:0.12~1.40;Pb:0.57~0.92;
Zn:0.54~1.12;Ag:15.47~87.52;
Bi:0.01~0.012
0.52
Table 3  B区矿体特征
Fig.9  K区综合异常剖析
1—二叠系Khang Khai组;2—石炭-二叠系Nong Het组;3—Ban Lao复式岩体;4—断层及编号;5—铜矿点
[1] 中国地质科学院地球物理地球化学勘查研究所. 中国重要金属矿勘查物探化探方法技术应用[M]. 北京: 地质出版社, 2011.
[1] Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Sciences. Application of geophysical and geochemical exploration methods and techniques for China’s important metal mine exploration[M]. Beijing: Geological Publishing House, 2011.
[2] 杨鸿鹏, 赵志逸, 韩杰, 等. 熊寿加沟系土壤地球化学测量在东昆仑Au元素低背景区的应用及成效——以格尔木市深沟地区1:2.5万沟系土壤地球化学测量为例[J]. 矿产勘查, 2019,10(2):291-301.
[2] Yang H P, Zhao Z Y, Han J, et al. Application and effect of soil geochemical survey in the Au low background of east kunlun elements:A case study of soil geochemistry in shengou area of Geermu city[J]. Mineral Exploration, 2019,10(2):291-301.
[3] 王小高, 陈鹏, 杨永千, 等. 云南垭口矿区沟系土壤地球化学异常特征及铅多金属矿找矿前景[J]. 矿产与地质, 2018,32(6):1098-1103.
[3] Wang X G, Chen P, Yang Y Q, et al. Valley soil geochemical characteristics and prospecting potential of Pb-polymetallic deposit in yakou area,Yunnan Province[J]. Mineral Resources and Geology, 2018,32(6):1098-1103.
[4] 刘海鹏, 鹿志忠. 埃塞俄比亚北部阿斯格德地区地球化学异常特征与找矿意义[J]. 矿产勘查, 2017,8(4):682-690.
[4] Liu H P, Lu Z Z. Geochemical anomalous characteristics and prospecting significance in Asgede area,northern Ethiopia[J]. Mineral Exploration, 2017,8(4):682-690.
[5] 王小高, 贺笑余, 陈鹏, 等. 沟系土壤地球化学测量在内乡韭菜沟矿区勘查中的应用[J]. 物探与化探, 2011,35(6):733-738.
[5] Wang X G, He X Y, Chen P, et al. The application of Valley soil geochemical survey to the Jiucaigou ore district in Neixiang[J]. Geophysical and Geochemical Exploration, 2011,35(6):733-738.
[6] 刁理品, 韩润生, 方维萱. 沟系土壤地球化学测量在贵州普晴锑金矿勘查区应用与找矿效果[J]. 地质与勘探, 2010,46(1):120-127.
[6] Diao L P, Han R S, Fang W X. Application of soil geochemical survey in the Puqing antimony-gold exploration area deposit and prospecting effect[J]. Geology and Exploration, 2010,46(1):120-127.
[7] 郝百武, 薛传东, 韩润生, 等. 沟系土壤测量在贵州大厂矿田普睛锑金矿区地质找矿中的应用[J]. 地质与勘探, 2008,44(6):73-78.
[7] Hao B W, Xue C D, Han R S, et al. Application of soil geochemistry of drainage system for ore prospecting in the Puqing Sb-Au orefield[J]. Geology and Prospecting, 2008,44(6):73-78.
[8] 李国华, 王大伟, 王国富, 等. 1:2.5万沟系次生晕地球化学找矿方法探讨[J]. 地质与勘探, 2001,37(3):50-52.
[8] Li G H, Wang D W, Wang G F, et al. 1:25000 geochemical prospecting by secondary halo of valleys[J]. Geology and Prospecting, 2001,37(3):50-52.
[9] 朱延浙, 吴军, 崔子良, 等. 老挝北部地区矿床资源与成矿预测[J]. 矿产与地质, 2007,21(16):665-667.
[9] Zhu Y Z, Wu J, Cui Z L, et al. Mineral resources in northern area of Lao with its ore-forming prediction[J]. Mineral Resources and Geology, 2007,21(16):665-667.
[10] 邵长亮, 王居松, 李宗瑾, 等. 老挝金矿成矿区带和矿化集中区探究[J]. 矿产勘查, 2015,6(6):787-792.
[10] Shao C L, Wang J S, Li Z J, et al. Study on gold metallogenic belt and mineralization concentrated area of Laos[J]. Mineral Exploration, 2015,6(6):787-792.
[11] 王宏, 王疆丽, 陈慕天, 等. 老挝川圹省Phu Kham铜金矿床地质特征及找矿方向[J]. 地质找矿论丛, 2014,29(1):66-71.
[11] Wang H, Wang J L, Chen M T, et al. Geological characteristics and prospecting index of the PhuKham Cu-Au deposit in xiangkhouang province,Laos[J]. Contributions to Geology and Mineral Resources Research, 2014,29(1):66-71.
[12] 朱延浙, 王泽传, 严城民, 等. 老挝铁矿资源与成矿预测[J]. 资源调查与环境, 2012,33(1):35-39.
[12] Zhu Y Z, Wang Z C, Yan C M, et al. Iron ore resources and metallogenic prognosis in Laos[J]. Resources Survey and Environment, 2012,33(1):35-39.
[13] 赵红娟, 陈永清, 卢映祥. 老挝长山成矿带与花岗岩有关的铜金铁矿产床的成矿模式[J]. 地质通报, 2011,30(10):1619-1627.
[13] Zhao H J, Chen Y Q, Lu Y X. Ore-forming model for Cu-Au-Fe ore deposits associated with granites in the Truongson ore-forming belt of Laos[J]. Geological Bulletin of China, 2011,30(10):1619-1627.
[14] 赵延朋, 王晓曼, 夏绪学, 等. 老挝甘蒙省南巴坦锡多金属矿田地质特征及成因浅析[J]. 有色矿冶, 2012,28(6):1-4.
[14] Zhao Y P, Wang X M, Xia X X, et al. Geological character and ore genesis of the Nam Paten tin-polymetallic ore deposite[J]. Non-Ferrous Mining and Metallurgy, 2012,28(6):1-4.
[15] 朱延浙, 吴军, 胡建军, 等. 老挝地质矿产概论[M]. 昆明: 云南科技出版社, 2009: 163-165.
[15] Zhu Y Z, Wu J, Hu J J, et al. Introduction to geology and mineral resources of Laos[M]. Kunming: Yunnan Science and Technology Press, 2009: 163-165.
[16] 贾润幸, 方维萱, 胡瑞忠. 老挝中北部花岗岩地球化学特征及其地质意义[J]. 矿物岩石, 2011,3l(3):82-89.
[16] Jia R X, Fang W X, Hu R Z. The geochemical characteristics of granites and their geological implication in north-central region of Laos[J]. Journal of Mineralogy and Petrology, 2011,31(3):82-89.
[17] 高建华, 范文玉, 吴振波, 等. 老挝爬立山铁矿二长花岗斑岩地球化学特征及其成矿意义[J]. 沉积与特提斯地质, 2015,35(3):102-108.
[17] Gao J H, Fan W Y, Wu Z B, et al. Geocheminstry and mineralization of the monzonite granite-porphyry from the PhuPhaLek iron deposit,Laos[J]. Sedimentary Geology and Tethyan Geology, 2015,35(3):102-108.
[18] 刘威, 牛英杰, 戴富余, 等. 老挝爬奔金矿地质地球化学特征及成因[J]. 科学技术及工程, 2017,17(30):14-19.
[18] Liu W, Niu Y J, Dai F Y, et al. Geological-geochemical characteristics and genesis of the phapon gold deposit in Laos[J]. Science Technology and Engineering, 2017,17(30):14-19.
[19] 王宏, 林方成, 李兴振, 等. 老挝及邻区构造单元划分与构造演化[J]. 中国地质, 2015,42(1):71-84.
[19] Wang H, Lin F C, Li X Z, et al. The division of tectonic units and tectonic evolution in Laos and its adjacent regions[J]. Geology in China, 2015,42(1):71-84.
[20] 施美凤, 林方成, 李兴振, 等. 东南亚中南半岛与中国西南邻区地层分区及沉积演化历史[J]. 中国地质, 2011,38(5):1244-1256.
[20] Shi M F, Lin F C, Li X Z, et al. Sratigraphic zoning and tectonic events in Indochina and adjacent areas southwest China[J]. Geology in China, 2011,38(5):1244-1256.
[21] 陈永清, 刘俊来, 冯庆来, 等. 东南亚中南半岛地质及与花岗岩有关的矿床[M]. 北京: 地质出版社, 2010: 178-182.
[21] Chen Y Q, Liu J L, Feng Q L, et al. Geology of the indochina peninsula in southeast Asia and granite-related deposits [M]. Beijing: Geological Publishing House, 2010: 178-182.
[22] 陈喜峰, 向运川, 叶锦华, 等. 东南亚中南半岛锡矿带成矿特征[J]. 地质通报, 2015,34(4):734-745.
[22] Chen X F, Xiang Y C, Ye J H, et al. Metallogenic characteristics of the central south peninsula tin ore belt in southeast Asia[J]. Geological Bulletin of China, 2015,34(4):734-745.
[23] 张进江, 钟大责, 周勇. 东南亚及哀牢山红河构造带构造演化的讨论[J]. 地质论评, 1999,45(4):337-344.
[23] Zhang J J, Zhong D Z, Zhou Y. Tectonic evolution of southeast Asia and the Ailao-Honghe tectonic belt[J]. Geological Review, 1999,45(4):337-344.
[24] 王义昭, 李兴林, 段丽兰, 等. 三江地区南段大地构造与成矿[M]. 北京: 地质出版社, 2000.
[24] Wang Y Z, Li X L, Duan L L, et al. Geotectonics and metallogenyin the south Nujiang-Lancang-Jinsha rivers area[M]. Beijing: Geological Publishing House, 2000.
[25] 杨社锋, 郭旻. 老挝赛松奔县纳勐铜多金属矿地质特征及控矿因素分析[J]. 西部探矿工程, 2012(5):167-169.
[25] Yang S F, Guo M. Analysis on geological characteristics and ore-controlling factors of Nameng copper polymetallic deposit in Sai Song Phen County, Laos[J]. West-China Exploration Project, 2012(5):167-169.
[26] 王满仓, 王疆涛, 彭海练, 等. 大比例尺地球化学勘查技术在隐伏矿找矿实践中的应用——以内蒙古乌拉特后旗查干德尔斯大型钼矿为例[J]. 物探与化探, 2018,42(4):668-674.
[26] Wang M C, Wang J T, Peng H L, et al. The application of large-scale geochemical prospecting thchnique to the prospecting for concealed ore deposits:A case study of the Chagandeersi large molybdenum deposit in Urad Rear Banner,Inner Mongolia[J]. Geophysical and Geochemical Exploration, 2018,42(4):668-674.
[27] 鄢明才, 顾铁新, 迟清华, 等. 中国土壤化学元素丰度与表生地球化学特征[J]. 物探与化探, 1997,21(3):161-167.
[27] Yan M C, Gu T X, Chi Q H, et al. Abundance of chemical elements of soils in China and supergenesis geochemistry characteristics[J]. Geophysical and Geochemical Exploration, 1997,21(3):161-167.
[28] 王玮, 王雪求, 张必敏, 等. 老挝全国地球化学填图与成矿远景区预测[J]. 地球学报, 2020,41(1):80-90.
[28] Wang W, Wang X Q, Zhang B M, et al. National-scale geochemical mapping and prediction of metallogenic prospective areas in Laos[J]. Acta Geoscientica Sinica, 2020,41(1):80-90.
[29] 严桃桃, 吴轩, 权养科, 等. 从岩石到土壤再到水系沉积物:风化过程的岩性地球化学基因[J]. 现代地质, 2018,32(3):453-467.
[29] Yan T T, Wu X, Quan Y K, et al. Heredity,inheritance and similarity of element behaviors among parent rocks and their weathered products:A geochemical lithogene[J]. Geoscience, 2018,32(3):453-467.
[30] 王学求. 巨型矿床与大型矿集区勘查地球化学[J]. 矿床地质, 2010,19(1):76-87.
[30] Wang X Q. Exploration geochemistry for giant ore deposit or world-class camps in concealed terrains[J]. Mineral Deposits, 2010,19(1):76-87.
[1] 邰文星, 杨成富, 靳晓野, 邵云彬, 刘光富, 赵平, 王泽鹏, 谭礼金. 多维度化探异常研究在黔西南者相金矿床深部成矿预测中的应用[J]. 物探与化探, 2023, 47(4): 856-867.
[2] 陈伟, 谭友, 曹正端, 廖志权, 张宁发, 傅海晖. 构造原生晕在攻深找盲中的应用——以赣南银坑牛形坝铅锌金银矿床为例[J]. 物探与化探, 2023, 47(4): 892-905.
[3] 魏从玲, 陈建立, 郭鹏. 基于MRAS证据权重模型的河南老湾地区金矿成矿预测[J]. 物探与化探, 2022, 46(3): 653-660.
[4] 唐瑞, 欧阳菲, 罗先熔, 郑超杰, 汤国栋, 刘攀峰, 蔡叶蕾, 杨笑笑. 相山矿田游坊地区地电提取找矿预测[J]. 物探与化探, 2021, 45(6): 1425-1438.
[5] 刘成功, 景建恩, 金胜, 魏文博. 广西大厂矿田深部成矿预测及成矿机制研究[J]. 物探与化探, 2021, 45(2): 337-345.
[6] 李凯, 廖咏, 黄凝, 陈红生, 袁晶, 刘小龙. 新疆巴里坤望洋台一带1∶5万水系沉积物测量异常特征及找矿靶区优选[J]. 物探与化探, 2019, 43(6): 1236-1245.
[7] 张恩, 段明, 卢辉雄, 冯博, 曹秋义, 杨彦超. 林西—乌兰浩特地区铀成矿多源信息分析与成矿预测[J]. 物探与化探, 2019, 43(5): 948-957.
[8] 李凯, 万欢. 江西乐平涌山地区土壤异常特征及找矿前景[J]. 物探与化探, 2019, 43(3): 494-501.
[9] 杨玉勤, 李兵海, 张翔. 利用航磁增强处理方法提取喇嘛苏铜矿及其外围弱磁异常[J]. 物探与化探, 2018, 42(6): 1173-1179.
[10] 孔志召. 太行山中段寺沟岩体电性结构分析及深部成矿预测[J]. 物探与化探, 2018, 42(5): 882-888.
[11] 周德文, 孟庆奎, 杨怡, 蒋久明, 高维, 王晨阳. 航磁全轴梯度异常特征研究[J]. 物探与化探, 2018, 42(3): 583-588.
[12] 乔祯, 蒋职权, 张国瑞, 张贤良. 内蒙古乌奴耳铅锌银矿物化探异常特征及找矿效果[J]. 物探与化探, 2017, 41(4): 634-640.
[13] 张伟, 陈陵康, 朱进守. 广东省典型铜矿床区域地球化学异常特征[J]. 物探与化探, 2016, 40(4): 728-731.
[14] 孔旭, 密文天, 莫雄, 谢敏涛, 蒋国林, 符长亮. 基于MRAS证据权重法的湖南怀化地区金矿成矿预测[J]. 物探与化探, 2016, 40(3): 467-474.
[15] 严永邦, 王海鹏, 严鸿, 王昌勇, 王丽君. 青海夏日哈木岩浆熔离型铜镍硫化物矿床1:5万航磁异常特征及找矿意义[J]. 物探与化探, 2016, 40(2): 250-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com