Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (2): 323-336    DOI: 10.11720/wtyht.2022.1138
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
烃汞叠加晕找矿法在湖南沃溪金矿红岩溪矿段勘查中的应用及工程验证
陈海龙1, 肖其鹏1, 徐质彬1, 杨海燕1, 梁巨宏2, 尹大改2
1.湖南省有色地质勘查研究院,湖南 长沙 410015
2.湖南辰州矿业有限责任公司,湖南 沅陵 419607
Application of hydrocarbon-mercury superimposed halo method in red beds:A case study of the Woxi gold deposit, Hunan Province
CHEN Hai-Long1, XIAO Qi-Peng1, XU Zhi-Bin1, YANG Hai-Yan1, LIANG Ju-Hong2, YIN Da-Gai2
1. Hunan Nonferrous Metals Geological Exploration Institution, Changsha 410015, China
2. Hunan Chenzhou Mining Co., Ltd., Yuanling 419607, China
全文: PDF(8435 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了更进一步验证烃汞叠加晕法在红层覆盖区“探深找盲”的可行性,在红岩溪矿段白垩系红层覆盖区面积4.3 km2范围内开展了网度为160 m×20 m的烃汞叠加晕面积性试验工作。通过总结红层土壤成矿元素与烃汞组分异常叠加特征、异常场结构和异常模式、空间对应关系以及在平面上分布规律,得出了以下结论:① 红岩溪矿段红层土壤地球化学场存在深源叠加场和同生叠加场。② 在矿脉走向上,同生叠加异常为无矿段,深源叠加异常为有矿段;在矿脉倾向上,对偶双峰异常模式控制矿体产出位置为有矿段,反之,为无矿段。③ 在平面图上,由对偶双峰异常模式中头部和尾部异常形成的环带异常的展布方向,为矿体侧伏方向;不同环带异常叠加,说明深部有平行盲脉产出,通过深部工程验证取得了较好的预测效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈海龙
肖其鹏
徐质彬
杨海燕
梁巨宏
尹大改
关键词 烃汞叠加异常红层覆盖区找矿试验沃溪金矿红岩溪    
Abstract

To further verify the feasibility of the hydrocarbon-mercury superimposed halo method in the coverage area of red beds in prospecting deep deposits, this study carried out area tests of hydrocarbon-mercury superimposed halo in 4.3 km2 of coverage area of Cretaceous red beds in the Hongyanxi ore block using a grid density of 160 m × 20 m. The following conclusions were drawn by summarizing the characteristics of the anomalies of metallogenic elements and hydrocarbon-mercury components in the soil in the red beds, including their superposition characteristics, field structures, patterns, spatial correspondence, and planar distribution patterns. ① There are deep-source and syngenetic superimposed fields in the soil geochemical field of red beds in the Hongyanxi ore block; ② Along the strikes of ore veins, syngeneic superimposed anomalies correspond to barren sections, while the deep-source superimposed anomalies correspond to ore sections. Along the dip directions of ore veins, the ore bodies under the control of paired bimodal anomaly mode occur in ore sections, while other ore bodies occur in barren sections; ③ Planarly, the distribution direction of zonal anomalies consisting of anomalies in the head and tail parts of the paired bimodal anomaly pattern is the pitch directions of orebodies. The superposition of different zonal anomalies indicates the occurrence of parallel blind veins in deep parts. These conclusions were verified in deep engineering, indicating ideal prediction results.

Key wordshydrocarbon-mercury superimposed anomaly    coverage area of red beds    prospecting test    Woxi gold deposit    Hongyanxi
收稿日期: 2021-03-12      修回日期: 2021-09-14      出版日期: 2022-04-20
ZTFLH:  P632  
基金资助:湖南省地质院科研基金项目“‘构造叠加晕—烃汞测量’在金矿深边部找矿预测中的应用示范 ”(202015);湖南辰州矿业有限责任公司资助项目“沃溪矿区仙鹅测区烃汞综合气体测量”(DT-2020-04)
作者简介: 陈海龙(1968-),男,1990年毕业于桂林冶金地质学院地球化学勘查专业,获学士学位,地球化学高级工程师,现主要从事地球化学勘查和理论应用研究工作。Email:444352037 @qq.com
引用本文:   
陈海龙, 肖其鹏, 徐质彬, 杨海燕, 梁巨宏, 尹大改. 烃汞叠加晕找矿法在湖南沃溪金矿红岩溪矿段勘查中的应用及工程验证[J]. 物探与化探, 2022, 46(2): 323-336.
CHEN Hai-Long, XIAO Qi-Peng, XU Zhi-Bin, YANG Hai-Yan, LIANG Ju-Hong, YIN Da-Gai. Application of hydrocarbon-mercury superimposed halo method in red beds:A case study of the Woxi gold deposit, Hunan Province. Geophysical and Geochemical Exploration, 2022, 46(2): 323-336.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1138      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I2/323
Fig.1  矿区地质构造简图
1—燕山构造层;2—武陵构造层;3—雪峰—加里东构造层;4—不整合界线;5—逆断层;6—性质不明断层;7—推覆断层;8—变形带分界线;9—韧脆性断层;10—反“S”型构造带;11—背斜;12—向斜;13—倒转向斜;14—推测背斜;15—断层编号;16—褶皱编号
Fig.2  红岩溪金矿床131号勘探线剖面示意
1—白垩系;2—五强溪组;3—马底驿组;4—砂砾岩;5—板岩;6—不整合线;7—断层及编号;8—矿脉及编号;9—蚀变岩
分类 产出位置 特点
深源叠加异常 T2、T8、T10、T12、
T14、T16、T18、T20、
T24、T83、T87、T79、T73
成矿元素Au与烃汞组分相关性较好,大部分在0.2~0.53之间,聚类分析和因子分析划分的指标与矿区深部成矿形成良好的耦合关系,显示出深源叠加特征,深部找矿潜力大
同生叠加异常 T4、T6 成矿元素Au与烃汞组分相关性都比较差,大部分在0.01~0.1之间,聚类分析和因子分析划分的指标与矿区变质作用成矿形成良好的耦合关系,显示出同生叠加,深部找矿潜力不大
Table 1  异常分类特征
指标 As Mo Sb W Au Bi 甲烷 乙烷 丙烷 正丁 异丁 异戊 正戊 乙烯 丙烯 Hg
As 1
Mo 0.50 1.00
Sb 0.87 0.26 1.00
W 0.58 0.30 0.54 1.00
Au 0.27 0.17 0.20 0.22 1.00
Bi 0.69 0.59 0.57 0.45 0.12 1.00
甲烷 0.26 0.06 0.23 0.11 0.04 0.08 1.00
乙烷 0.28 0.05 0.24 0.13 0.04 0.08 1.00 1.00
丙烷 0.20 0.19 0.17 0.10 0.06 0.04 0.96 0.97 1.00
正丁 0.13 0.30 0.13 0.05 0.09 0.14 0.85 0.86 0.93 1.00
异丁 0.13 0.25 0.09 0.02 0.06 0.13 0.92 0.93 0.98 0.93 1.00
异戊 0.01 0.43 0.02 0.02 0.08 0.24 0.70 0.72 0.83 0.87 0.88 1.00
正戊 0.13 0.35 0.18 0.17 0.03 0.40 0.48 0.50 0.62 0.64 0.73 0.77 1.00
乙烯 0.22 0.45 0.26 0.10 0.04 0.48 0.52 0.54 0.67 0.71 0.73 0.78 0.75 1.00
丙烯 0.14 0.23 0.12 0.06 0.06 0.08 0.93 0.94 0.98 0.93 0.96 0.82 0.62 0.72 1.00
Hg 0.34 0.15 0.42 0.09 0.12 0.53 0.06 0.07 0.18 0.22 0.24 0.27 0.50 0.66 0.22 1
Table 2  T4线土壤各指标相关系数统计
指标 As Mo Sb W Au Bi 甲烷 乙烷 丙烷 正丁 异丁 异戊 正戊 乙烯 丙烯 Hg
As 1
Mo 0.11 1.00
Sb 0.67 0.21 1.00
W 0.92 0.08 0.47 1.00
Au 0.44 0.54 0.80 0.33 1.00
Bi 0.36 0.69 0.43 0.35 0.53 1.00
甲烷 0.43 0.10 0.46 0.36 0.26 0.17 1.00
乙烷 0.43 0.23 0.48 0.37 0.33 0.24 0.98 1.00
丙烷 0.51 0.13 0.59 0.44 0.42 0.18 0.95 0.96 1.00
正丁 0.52 0.02 0.65 0.46 0.45 0.12 0.86 0.86 0.95 1.00
异丁 0.49 0.14 0.58 0.43 0.44 0.16 0.91 0.93 0.99 0.94 1.00
异戊 0.49 0.11 0.59 0.45 0.44 0.08 0.73 0.70 0.84 0.92 0.85 1.00
正戊 0.27 0.17 0.45 0.26 0.51 0.13 0.62 0.67 0.77 0.78 0.84 0.82 1.00
乙烯 0.49 0.07 0.54 0.45 0.51 0.06 0.67 0.68 0.82 0.84 0.86 0.88 0.84 1.00
丙烯 0.46 0.20 0.52 0.39 0.44 0.20 0.92 0.93 0.95 0.88 0.95 0.78 0.76 0.85 1.00
Hg 0.20 0.40 0.48 0.08 0.09 0.10 0.15 0.09 0.17 0.26 0.15 0.26 0.04 0.00 0.01 1.00
Table 3  T8线土壤各指标相关系数统计
Fig.3  T4线R聚类分析谱系
Fig.4  T8线R聚类分析谱系
T4线正交旋转载荷矩阵 T8线正交旋转载荷矩阵
指标 F1 F2 指标 F1 F2 F3
As -0.1371 0.8613 As -0.1369 0.2488 0.858
Mo 0.2486 0.6498 Mo -0.0313 0.9237 0.0101
Sb -0.1208 0.7646 Sb -0.1417 0.6415 0.3055
W 0.0118 0.8251 W -0.1803 0.0939 0.9181
Au 0.0052 0.234 Au -0.1005 0.7956 0.2271
Bi 0.1177 0.7794 Bi 0.10000 0.7767 0.1883
甲烷 0.9346 -0.2116 甲烷 0.9544 -0.0992 -0.0654
乙烷 0.9346 -0.2116 乙烷 0.9544 -0.0992 -0.0654
丙烷 0.9886 -0.0984 丙烷 0.9682 -0.0954 -0.1034
异丁 0.9525 -0.0004 异丁 0.8719 0.0323 -0.1168
正丁 0.9983 0.0086 正丁 0.949 -0.102 -0.1028
异戊 0.8776 0.1352 异戊 0.718 0.1277 -0.1259
正戊 0.7021 0.2562 正戊 0.6148 -0.0389 0.0088
乙烯 0.721 0.2951 乙烯 0.7306 0.0368 -0.1576
丙烯 0.9787 -0.0365 丙烯 0.9198 -0.1038 -0.0899
Hg 0.2109 0.2392 Hg 0.0549 0.1034 0.0782
主因子方差贡献 7.5226 3.4206 主因子方差贡献 6.7888 2.6526 1.8579
Table 4  因子分析结果
Fig.5  红岩溪矿段T8线地球化学剖面
1—白垩系;2—五强溪组;3—马底驿组;4—板岩;5—砂砾岩;6—不整合接触界线;7—实、推测断层及编号;8—实、推测蚀变带及编号;9—矿脉及编号;10—品位(10-6)/厚度(m);11—甲烷;12—乙烷和丙烷;13—异丁烷、正丁烷、异戊烷、正戊烷;14—乙烯;15—丙烯
Fig.6  红岩溪矿段T4线地球化学剖面
1—白垩系;2—五强溪组;3—马底驿组中段;4—板岩;5—砂质板岩;6—砂砾岩;7—不整合接触界线;8—实、推测断层及编号;9—实、推测蚀变带及编号;10—矿脉及编号;11—品位(10-6)/厚度(m);12—甲烷;13—乙烷和丙烷;14—异丁烷、正丁烷、异戊烷、正戊烷;15—乙烯;16—丙烯
Fig.7  红岩溪矿段烃汞综合异常
1—第四系;2—白垩系;3—震旦系;4—五强溪组;5—马底驿组;6—蚀变带及编号;7—实测、推测地层界线;8—地层不整合界线;9—断层;10—见矿钻孔;11—低品位钻孔;12—未见矿钻孔;13—成矿预测区
Fig.8  红岩溪矿段深部成矿预测及工程验证
[1] 赵阳, 汪明启, 张鹤. 土壤(土被)中后生异常与深穿透地球化学[J]. 物探与化探, 2021, 45(2):257-265.
[1] Zhao Y, Wang M Q, Zhang H. Epigenetic anomalies and deep penetration geochemistry of soil (soil cover)[J]. Geophysical and Geochemical Exploration, 2021, 45(2): 257-265.
[2] 陈远荣, 贾国相, 戴塔根. 论有机质与金属成矿和勘查[J]. 中国地质, 2002, 29(3):257-262.
[2] Chen Y R, Jia G X, Dai T G. The role of organic material in metallic mineralization and its application in metal exploration[J]. Geology in China, 2002, 29(3): 257-262.
[3] Saxby I D. 有机质在矿床成因中的重要意义:层控矿床与层状矿床(第二卷)[M].肖学军,译. 北京: 地质出版社, 1980.
[3] Saxby I D. The significance of organic matter in the genesis of ore deposits:Stratabound and stratiform deposits (Volume Ⅱ)[M]. Xiao X J, translate. Beijing: Geological Publishing House, 1980.
[4] 李生郁, 徐丰孚. 轻烃与硫化物气体测量寻找金矿隐伏矿方法试验[J]. 物探与化探, 1997, 45(2):499-504.
[4] Li S Y, Xu F F. The test of light hydrocarbon and sulfide gas measurement forconcealed gold deposit[J]. Geophysical and Geochemical Exploration, 1997, 45(2): 499-504.
[5] 胡凯. 金矿床中的有机质及其成矿作用[J]. 矿物岩石地球化学通报, 1998, 17(2):71-75.
[5] Hu K. Organic matter and its mineralization in gold deposits[J]. Bulletin of Minerals, Rocks, Geochemistry, 1998, 17(2): 71-75.
[6] 陈远荣, 贾国相, 徐庆鸿. 气体集成快速定位预测隐伏矿新技术研究[M]. 北京: 地质出版社, 2003.
[6] Chen Y R, Jia G X, Xu Q H. Study on new technique of gas integrated rapid location and prediction of concealed ore[M]. Beijing: Geological Publishing House, 2003.
[7] 中国地球化学研究所. 有机地球化学论文集[M]. 北京: 科学出版社, 1986.
[7] China Institute of Geochemistry. Papers on organic geochemistry[M]. Beijing: Science Press, 1986.
[8] 陈远荣, 戴塔根, 贾国相, 等. 金属矿床有机烃气常见异常模式和成因机理研究[J]. 中国地质, 2001, 15(87):738-742.
[8] Chen Y R, Dai T G, Jia G X, et al. The common anomaly pattern of organic hydrocarbon of metallic deposit and its mechanism[J]. Geology in China, 2001, 15(87): 738-742.
[9] 陈远荣, 戴塔根, 庄晓蕊, 等. 烃汞气体组分垂向运移的主要控制因素[J]. 中国地质, 2001, 28(8):28-32.
[9] Chen Y R, Dai T G, Zhuang X R, et al. Main controlling factors for vertical migration of hydrocarbons and mercury[J]. Chinese Geology, 2001, 28(8): 28-32.
[10] 徐庆鸿, 陈远荣, 毛景文, 等. 有机烃在预测隐伏金矿床中的应用及其成因探索[J]. 地质论评, 2005, 51(5):105-112.
[10] Xu Q H, Chen Y R, Mao J W, et al. Application for Hydrocarbon in prognosis buried gold deposits and implication for Genesis[J]. Geological Review, 2005, 51(5): 105-112.
[11] 贾国相, 陈远荣, 姚锦其. 中国特色景观油气综合化探技术[M]. 北京: 石油工业出版社, 2002.
[11] Jia G X, Chen Y R, Yao J Q. Comprehensive geochemical exploration technique of landscape oil and gas with Chinese characteristics[M]. Beijing: Petroleum Industry Press, 2002.
[12] 陈海龙, 肖其鹏, 梁巨宏. 湖南沃溪金矿区及其外围烃汞叠加晕找矿方法的应用效果[J]. 物探与化探, 2021, 45(2):266-280.
[12] Chen H L, Xiao Q P, Liang J H. The application of hydrocarbon and superimposed halo method to the Woxi gold deposit, Hunan Province[J]. Geophysical and Geochemical Exploration, 2021, 45(2): 266-280.
[13] 彭南海. 湖南沅陵沃溪金-锑-钨矿床地质地球化学特征及成因研究[D]. 长沙: 中南大学, 2017.
[13] Peng N H. Study on geological and geochemical characteristics and genesis of Woxi Au-Sb-Wdeposit Yuanling, Hunan province[D]. Changsha: Central South University, 2017.
[14] 陈海龙, 杨晓弘, 何永淼, 等, 湖南沃溪金锑钨矿床成矿地质特征及多元信息找矿模式[M]. 长沙: 中南大学出版社, 2021.
[14] Chen H L, Yang X H, He Y M, et al. Metallogenic geological characterics and multiple information prospecting model of Woxi Au-Sb-Wdeposit in Hunan province[M]. Changsha: Central South University Press, 2021.
[15] 胡召齐, 朱光, 张必龙, 等. 雪峰隆起北部加里东事件的K-Ar年代学研究[J]. 地质论评, 2010, 56(4):490-500.
[15] Hu Z Q, Zhu G, Zhang B L, et al. K-Ar Geochronology of the Caledonian Event in the Xuefeng Uplift[J]. Geological Review, 2010, 56(4): 490-500.
[16] 金宠, 李三忠, 王岳军, 等. 雪峰山陆内复合构造系统印支—燕山期构造穿时递进特征[J]. 石油与天然气地质, 2009, 30(5):598-607.
[16] Jin C, Li S Z, Wang Y J, et al. Diachronous and progressive deformation during the Indosinian-Yanshanian movements of the Xuefeng Mountainintracontinental composite tectonic system[J]. Oil & Gas Geology, 2009, 30(5): 598-607.
[17] 马小双. 湘西雪峰中段金锑矿床流体包裹体及同位素特征研究[D]. 湘潭: 湖南科技大学, 2016.
[17] Ma X S. Study on fluid inclusions and isotopic characteristics of the Middle Xuefeng gold-antimony deposit in Xiangxi[D]. Xiangtan: Hunan University of Science and Technology, 2016.
[18] 彭建堂. 湖南雪峰地区金成矿演化机理探讨[J]. 大地构造与成矿学, 1999, 23(2):144-151.
[18] Peng J T. Discussion on the evolution mechanism of gold mineralization in Xuefeng area, Hunan Province[J]. Geotectonica et Metallogenia, 1999, 23(2): 144-151.
[19] 刘英俊, 孙承辕, 马东升. 江南金矿及其成矿作用地球化学背景[M]. 南京: 南京大学出版社, 1993.
[19] Liu Y J, Sun C Y, Ma D S. Jiangnan gold deposit and its geochemical background of mineralization[M]. Nanjing: Nanjing University Press, 1993.
[20] 邵靖帮, 王濮, 陈代璋. 湘西沃溪金锑钨矿床矿化蚀变带有机质特征初探[J]. 贵金属地质, 1996, 5(2):195-200.
[20] Shao J B, Wang P, Chen D Z. Preliminary study on the organic characteristics of the mineralization alteration zone of the Woxi gold-antimony-tungsten deposit in Xiangxi[J]. Geology of Precious Metals, 1996, 5(2): 195-200.
[21] 杜乐天. 地壳流体与地幔流体间的关系[J]. 地学前缘, 1996, 3(3/4):172-180.
[21] Du L T. The relationship between crustal fluids and mantle fluids[J]. Earth Science Frontiers, 1996, 3(3/4):172-180.
[22] 杜乐天. 烃碱地球化学原理[M]. 北京: 北京科技出版社, 1996.
[22] Du L T. Principles of hydrocarbon alkali geochemistry[M]. Beijing: Beijing Science and Technology Press, 1996.
[23] 杜乐天. 幔汁流体与软流层(体)地球化学[M]. 北京: 地质出版社, 1996.
[23] Du L T. Mantle juice fluid and asthenosphere (body) geochemistry[M]. Beijing: Geological Publishing House, 1996.
[24] 刘丛强, 黄智龙. 地幔流体及其成矿作用[M]. 北京: 地质出版社, 2004.
[24] Liu C Q, Huang Z L. Mantle fluid and its mineralization[M]. Beijing: Geological Publishing House, 2004.
[25] 毛景文, 张晓峰, 李荣华, 等著. 深部流体成矿系统[M]. 北京: 中国大地出版社, 2004.
[25] Mao J W, Zhang X F, Li R H, et al. Deep fluid mineralization system[M]. Beijing: China Land Publishing House, 2004.
[26] 刘丛强, 黄智龙, 李和平, 等. 地幔流体及其成矿作用[J]. 地学前缘, 2001, 8(4):231-243.
[26] Liu C Q, Huang Z L, Li H P, et al. Mantle fluid and its mineralization[J]. Earth Science Frontiers, 2001, 8(4): 231-243.
[27] 路风香. 深部地幔及深部流体[J]. 地学前缘, 1996, 3(4):231-243.
[27] Lu F X. Deep mantle and deep fluids[J]. Earth Science Frontiers, 1996, 3(4): 231-243.
[28] 曹荣龙, 朱华寿. 地幔流体与成矿作用[J]. 地球科学进展, 1995, 10(4):324-329.
[28] Cao R L, Zhu H S. Mantle fluids and mineralization[J]. Advances in Earth Science, 1995, 10(4): 324-329.
[29] 刘英俊, 曹励民, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984.
[29] Liu Y J, Cao L M, Li Z L, et al. Elemental geochemistry[M]. Beijing: Science Press, 1984.
[30] Nan J B, King H E, Delen G, et al. The nanogeochemistry of abiotic carbonaceous matter in serpentinites from the Yap Trench, western Pacific Ocean[J]. Geology, 2021, 49(3): 330-334.
doi: 10.1130/G48153.1
[31] 梁婷, 高景刚, 朱文戈. 成矿流体类型及研究方法综述[J]. 西安文理学院学报:自然科学版, 2005, 8(4):36-42.
[31] Liang T, Gao J G, Zhu W G. A summary on the types of ore-forming fluids and research methods[J]. Journal of Xi’an University:Natural Science Edition, 2005, 8(4): 36-42.
[32] 张文淮, 张志坚, 伍刚. 成矿流体及成矿机制[J]. 地学前缘, 1996, 3(3/4):245-252.
[32] Zhang W H, Zhang Z J, Wu G. Ore-forming fluid and mineralization mechanism[J]. Earth Science Frontiers, 1996, 3(3/4):245-252.
[33] 涂修元. 天然气和表土中汞蒸气含量及分布特征[J]. 地球化学, 1992, 3(9):294-303
[33] Tu X Y. Mercury vapor content and distribution characteristics in natural gas and topsoil[J]. Geochemistry, 1992, 3(9): 294-303.
[34] 孟宪伟, 窦明晓, 余先川. 地球化学场分解的理论与方法[J]. 地球科学进展, 1994, 6(6):59-64.
[34] Meng X W, Dou M X, Yu X C. The theories and methods on the dispersion of geochemical field[J]. Advance in Earth Sciences, 1994, 6(6): 59-64.
[35] 戚长谋. 元素地球化学分类探讨[J]. 长春科技大学学报, 1997, 21(4):361-365.
[35] Qi C M. A discussion for geochemical classification of elements[J]. Journal of Changchun University of Earth Science, 1997, 21(4): 361-365.
[36] 吴锡生. 化探数据处理方法[M]. 北京: 冶金出版社, 2008.
[36] Wu X S. Data processing method of geochemical exploration[M]. Beijing: Metallurgical Publishing House, 2008.
[37] 於崇文. 数学地质的方法与应用[M]. 北京: 冶金出版社, 1995.
[37] Yu C W. Methods and applications of mathematical geology[M]. Beijing: Metallurgical Press, 1995.
[38] Bolviken B, Stokke P R, Feder J, et al. The fractal nature of geochemical landscapes[J]. Geochemical Exploration, 1992, 43: 91-109.
doi: 10.1016/0375-6742(92)90001-O
[39] 成秋明. 多重分形与地质统计学方法用于勘查地球化学异常空间结构和奇异性分析[J]. 中国地质大学学报, 2001, 26(2):161-166.
[39] Cheng Q M. Multifractal and geostatistics methods used to explore the spatial structure and singularity of geochemical anomalies[J]. Journal of China University of Geosciences, 2001, 26(2): 161-166.
[40] 成秋明. 空间自相似性与地球物理和地球化学场的分解方法[J]. 地球物理学进展, 2001, 16(2):9-17.
[40] Cheng Q M. Spatial self-similarity and the decomposition method of geophysical and geochemical fields[J]. Progress in Geophysics, 2001, 16(2): 9-17.
[41] 张哲儒, 毛华海. 分形理论与成矿作用[J]. 地学前缘, 2000, 7(1):195-204.
[41] Zhang Z R, Mao H H. Fractal theory and mineralization[J]. Frontiers of Earth Science, 2000, 7(1): 195-204.
[42] 谢淑云, 鲍征宇. 地球化学场的连续多重分形模式[J]. 地球化学, 2002, 21(2):191-200.
[42] Xie S Y, Bao Z Y. Continuous multifractal model of geochemical field[J]. Geochemistry, 2002, 21(2): 191-200.
[1] 陈海龙, 肖其鹏, 梁巨宏. 湖南沃溪金矿区及其外围烃汞叠加晕找矿方法的应用效果[J]. 物探与化探, 2021, 45(2): 266-280.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com