Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (2): 437-442    DOI: 10.11720/wtyht.2024.1110
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于功率谱密度筛选的高海拔区背景噪声快速成像技术
刘迪(), 杨涛, 宋华东, 李广超, 毋光荣, 郭良春, 张锦想
黄河勘测规划设计研究院有限公司,河南 郑州 450003
A fast imaging technology for screening ambient noise in high-altitude areas based on power spectral density
LIU Di(), YANG Tao, SONG Hua-Dong, LI Guang-Chao, WU Guang-Rong, GUO Liang-Chun, ZHANG Jin-Xiang
Yellow River Engineering Consulting Co.,Ltd.,Zhengzhou 450003,China
全文: PDF(4829 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

真实且高信噪比的经验格林函数是准确提取面波频散和反演地下结构的前提,而实际噪声源分布与理论存在差异,且高海拔区噪声源数量少、能量弱,不仅需要长时间的数据采集,也难以获得高信噪比的经验格林函数。因此本文提出基于功率谱密度的背景噪声数据筛选方法,对某高海拔地区采集的92 h的背景噪声数据进行筛选,不仅大幅缩短了互相关计算时长,更有效提取了高信噪比的面波,减弱了高视速度干扰波,并获得了浅层0~140 m高分辨率的横波速度结构。本次研究为作业难度大的高海拔区开展周期短的水利水电勘察工作提供了新思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘迪
杨涛
宋华东
李广超
毋光荣
郭良春
张锦想
关键词 功率谱密度数据筛选高海拔区背景噪声成像面波    
Abstract

Acquiring empirical Green's functions with a real and high signal-to-noise ratio serves as a prerequisite for deriving surface wave dispersion and inverting underground structures.However,the distribution of actual noise sources differs from the theory,and the energy and quantity of noise sources are limited in the high-altitude areas.Acquiring empirical Green’s functions with a high signal-to-noise ratio is challenging,apart from a prolonged data acquisition period required.Given these,this study presented a method for screening ambient noise data based on power spectral density.Using this method,this study screened 92-hour ambient noise data from a high-altitude area.Consequently,this method significantly reduced the calculation time of cross-correlation,effectively extracted surface waves with a high signal-to-noise ratio,reduced the interference waves with high apparent velocities,and obtained a high-resolution shallow shear wave velocity structure of shallow parts with burial depths ranging from 0~140 m.This study provides a novel method for challenging,short-term exploration of water conservancy and hydropower generation in high-altitude areas.

Key wordspower spectral density    data selection    high-altitude area    ambient noise imaging    surface wave
收稿日期: 2023-04-18      修回日期: 2023-11-28      出版日期: 2024-04-20
ZTFLH:  P631.4  
基金资助:黄河勘测规划设计研究院自主科研项目(2021KY050)
作者简介: 刘迪(1996-),男,汉族,中国地质大学(北京)硕士研究生毕业,主要从事浅层背景噪声成像技术研究与应用工作。Email:liudi202303@163.com
引用本文:   
刘迪, 杨涛, 宋华东, 李广超, 毋光荣, 郭良春, 张锦想. 基于功率谱密度筛选的高海拔区背景噪声快速成像技术[J]. 物探与化探, 2024, 48(2): 437-442.
LIU Di, YANG Tao, SONG Hua-Dong, LI Guang-Chao, WU Guang-Rong, GUO Liang-Chun, ZHANG Jin-Xiang. A fast imaging technology for screening ambient noise in high-altitude areas based on power spectral density. Geophysical and Geochemical Exploration, 2024, 48(2): 437-442.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1110      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I2/437
Fig.1  实验区位置及台站分布
Fig.2  背景噪声数据筛选方法
Fig.3  部分道原始噪声波形(a)和原始噪声平均功率谱密度(b)
Fig.4  第7点虚拟震源单炮
Fig.5  不同类型数据虚拟单炮信噪比及计算时长
Fig.6  第7点频率—相速度
Fig.7  第7点横波速度反演
Fig.8  横波速度剖面
[1] 吴学雷. 实测资料缺乏条件下水电工程勘察设计技术应用[J]. 云南水力发电, 2017, 33(5):74-79.
[1] Wu X L. Application of the survey and design technology of a hydropower project in the case of shortage of observed data[J]. Yunnan Water Power, 2017, 33(5):74-79.
[2] Aki K. Space and time spectra of stationary stochastic waves,with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 1957, 35:415-456.
[3] Liu Y N, Niu F L, Chen M, et al. 3-D crustal and uppermost mantle structure beneath NE China revealed by ambient noise adjoint tomography[J]. Earth and Planetary Science Letters, 2017, 461:20-29.
doi: 10.1016/j.epsl.2016.12.029
[4] Wang K, Liu Q Y, Yang Y J. Three-dimensional sensitivity kernels for multicomponent empirical Green's functions from ambient noise:Methodology and application to adjoint tomography[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(6):5794-5810.
doi: 10.1029/2018JB017020
[5] Yao H J. Building the community velocity model in the Sichuan-Yunnan region,China:Strategies and progresses[J]. Science China Earth Sciences, 2020, 63(9):1425-1428.
doi: 10.1007/s11430-020-9645-3
[6] Xia J H. Estimation of near-surface shear-wave velocities and quality factors using multichannel analysis of surface-wave methods[J]. Journal of Applied Geophysics, 2014, 103:140-151.
doi: 10.1016/j.jappgeo.2014.01.016
[7] 邵广周, 李远林, 岳亮. 主动源与被动源面波联合勘探在黄土覆盖区三维成像中的应用[J]. 物探与化探, 2022, 46(4):897-903.
[7] Shao G Z, Li Y L, Yue L. Joint application of active and passive surface wave in 3D imaging of loess covered area[J]. Geophysical and Geochemical Exploration, 2022, 46(4):897-903.
[8] 王仁涛, 李志伟, 包丰, 等. 松辽盆地沉积层结构的短周期地震背景噪声成像研究[J]. 地球物理学报, 2019, 62(9):3385-3399.
doi: 10.6038/cjg2019M0144
[8] Wang R T, Li Z W, Bao F, et al. S-wave velocity structure of sediment in Songliao Basin from short-period ambient noise tomography[J]. Chinese Journal of Geophysics, 2019, 62(9):3385-3399.
[9] 刘旭, 钱荣毅, 兰澜, 等. 登封观星台地基超高密度背景噪声探测[J]. 科学技术与工程, 2022, 22(6):2193-2200.
[9] Liu X, Qian R Y, Lan L, et al. Ultra-high-density ambient noise detection on the foundation of Dengfeng observatory[J]. Science Technology and Engineering, 2022, 22(6):2193-2200.
[10] 董耀, 李光辉, 高鹏举, 等. 微动勘查技术在地热勘探中的应用[J]. 物探与化探, 2020, 44(6):1345-1351.
[10] Dong Y, Li G H, Gao P J, et al. The application of fretting exploration technology in the exploration of middle and deep clean energy[J]. Geophysical and Geochemical Exploration, 2020, 44(6):1345-1351.
[11] Qian R Y, Liu L B. Imaging the active faults with ambient noise passive seismics and its application to characterize the Huangzhuang-Gaoliying fault in Beijing Area,Northern China[J]. Engineering Geology, 2020, 268:105520.
doi: 10.1016/j.enggeo.2020.105520
[12] 刘伟, 黄韬, 王庭勇, 等. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4):1077-1087.
[12] Liu W, Huang T, Wang T Y, et al. The application of integrated geophysical prospecting methods to the exploration of urban buried fault[J]. Geophysical and Geochemical Exploration, 2021, 45(4):1077-1087.
[13] Larose E, Derode A, Campillo M, et al. Imaging from one-bit correlations of wideband diffuse wave fields[J]. Journal of Applied Physics, 2004, 95(12):8393-8399.
doi: 10.1063/1.1739529
[14] Seydoux L, de Rosny J, Shapiro N M. Pre-processing ambient noise cross-correlations with equalizing the covariance matrix eigenspectrum[J]. Geophysical Journal International, 2017, 210(3):1432-1449.
doi: 10.1093/gji/ggx250
[15] Xie J Y, Yang Y J, Luo Y H. Improving cross-correlations of ambient noise using an rms-ratio selection stacking method[J]. Geophysical Journal International, 2020, 222(2):989-1002.
doi: 10.1093/gji/ggaa232
[16] Ventosa S, Schimmel M, Stutzmann E. Extracting surface waves,hum and normal modes:Time-scale phase-weighted stack and beyond[J]. Geophysical Journal International, 2017, 211(1):30-44.
doi: 10.1093/gji/ggx284
[17] Cheng F, Xia J H, Luo Y H, et al. Multichannel analysis of passive surface waves based on crosscorrelations[J]. Geophysics, 2016, 81(5):EN57-EN66.
[18] Cheng F, Xia J H, Shen C, et al. Imposing active sources during high-frequency passive surface-wave measurement[J]. Engineering, 2018, 4(5):685-693.
doi: 10.1016/j.eng.2018.08.003
[19] Peterson J. Observations and modeling of seismic background noise[R]. U.S. Geological Survey Open File Report, 1993:93-322.
[20] 刘亚楠, 刘保华, 刘晨光, 等. 南海东部次海盆地震背景噪声分析[J]. 海洋地质与第四纪地质, 2021, 41(2):109-117.
[20] Liu Y N, Liu B H, Liu C G, et al. Research on seismic background noise in the Eastern Subbasin of the South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(2):109-117.
[21] Seats K J, Lawrence J F, Prieto G A. Improved ambient noise correlation functions using Welch's method[J]. Geophysical Journal International, 2012, 188(2):513-523.
doi: 10.1111/gji.2012.188.issue-2
[22] Bensen G D, Ritzwoller M H, Barmin M P, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 2007, 169(3):1239-1260.
doi: 10.1111/gji.2007.169.issue-3
[23] Pang J Y, Cheng F, Shen C, et al. Automatic passive data selection in time domain for imaging near-surface surface waves[J]. Journal of Applied Geophysics, 2019, 162:108-117.
doi: 10.1016/j.jappgeo.2018.12.018
[1] 秦长春, 王国顺, 李婧. 主动源面波采集装置改进及在地铁施工勘察中的应用[J]. 物探与化探, 2024, 48(1): 264-271.
[2] 张泽奇, 高级, 刘梁, 查华胜, 张海江. 基于三角和线性台阵的煤矿背景噪声成像技术适用性研究[J]. 物探与化探, 2023, 47(6): 1528-1537.
[3] 张利振, 孙成禹, 王志农, 李世中, 焦峻峰, 颜廷容. 面波信息约束的初至波走时层析反演方法[J]. 物探与化探, 2023, 47(5): 1198-1205.
[4] 陈实, 金荣杰, 李延清, 李崇博, 胡尊平. 天然源面波技术在城市规划区场地评价中的应用[J]. 物探与化探, 2023, 47(1): 264-271.
[5] 亓庆新, 席振铢, 徐昱, 木仁. 等值反磁通瞬变电磁法天线零磁通面位置的确定方法[J]. 物探与化探, 2022, 46(6): 1540-1544.
[6] 邵广周, 李远林, 岳亮. 主动源与被动源面波联合勘探在黄土覆盖区三维成像中的应用[J]. 物探与化探, 2022, 46(4): 897-903.
[7] 吴为治, 娄利, 王鹏, 王宾. 基于Python语言的瑞利面波频散反演实行方案[J]. 物探与化探, 2022, 46(3): 743-749.
[8] 马国凯, 魏定勇, 刘爱友, 林万顺. 浅层地震技术在南水北调中线工程PCCP管道缺陷探测中的应用[J]. 物探与化探, 2022, 46(2): 525-530.
[9] 李巧灵, 张辉, 雷晓东, 李晨, 房浩, 关伟, 韩宇达, 赵旭辰. 综合利用多道瞬态面波和微动探测分析斜坡内部结构[J]. 物探与化探, 2022, 46(1): 258-267.
[10] 许艺煌, 黄真萍, 程志伟, 陈少博, 陈振明. 高密度电阻率法在弃渣堆积体分布调查中的应用[J]. 物探与化探, 2020, 44(2): 435-440.
[11] 刘现锋, 姜文龙, 王旭明, 马若龙, 胡文哲. 复杂地质条件下的面波探测技术应用研究[J]. 物探与化探, 2020, 44(2): 449-455.
[12] 唐文, 李江, 汪铁望. 黄土塬区多道瞬态面波数据采集试验分析[J]. 物探与化探, 2020, 44(1): 165-170.
[13] 杨飞龙, 俞岱, 孙渊. 基于压缩感知的复杂地表菲涅尔束偏移[J]. 物探与化探, 2019, 43(6): 1285-1290.
[14] 陈实, 李延清, 李同贺, 金荣杰, 张静. 天然源面波技术在乌鲁木齐城市地质调查中的应用[J]. 物探与化探, 2019, 43(6): 1389-1398.
[15] 王志农, 孙成禹, 伍敦仕. 基于最佳小波基的地震面波插值方法[J]. 物探与化探, 2019, 43(1): 189-198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com