Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (4): 1040-1047    DOI: 10.11720/wtyht.2023.1303
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
微动信号模拟及其在微动勘探中的应用
李传金1,2,3(), 王强1, 渐翔1, 郑涛1, 詹素华1,2, 陈绍伟1
1.福建理工大学 土木工程学院,福建 福州 350118
2.福建理工大学 岩土工程研究所,福建 福州 350118
3.福建理工大学 地下工程福建省高校重点实验室,福建 福州 350118
Microtremor signal simulation and its application in microtremor exploration
LI Chuan-Jin1,2,3(), WANG Qiang1, JIAN Xiang1, ZHENG Tao1, ZHAN Su-Hua1,2, CHEN Shao-Wei1
1. School of Civil Engineering,Fujian University of Technology,Fuzhou 350118,China
2. Institute of Geotechnical Engineering,Fujian University of Technology,Fuzhou 350118,China
3. Key Laboratory of Underground Engineering in Universities of Fujian Province,Fujian University of Technology,Fuzhou 350118,China
全文: PDF(3904 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

对于简正振型叠加法合成的微动信号,使用空间自相关法计算的频散曲线与理论频散曲线对比,发现两者具有较好的一致性。模拟微动信号时涉及许多参数,这些参数对微动勘探开展具有重要意义。对这些参数进行了数值试验,试验结果表明:震源距离和台阵尺寸对结果有明显影响,在复杂地层情况下应考虑高阶面波,在安静的观测场地应用小尺寸台阵往往能获得更高频率的频散信息从而提高浅层分辨率。因此,在实际开展微动勘探时,应考虑震源分布、台阵尺寸和高阶面波等因素对勘探结果的影响。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李传金
王强
渐翔
郑涛
詹素华
陈绍伟
关键词 微动信号简正振型叠加微动勘探频散曲线空间自相关法    
Abstract

This study synthesized microtremor signals using the normal mode superposition.The dispersion curves of the synthesized microtremor signals were calculated using the spatial autocorrelation method,and the calculated results agreed well with theoretical dispersion curves.The simulation of microtremor signals involves many parameters,which are of great significance for microtremor exploration.As shown by results from numerical experiments of these parameters,the hypocentral distance and array size had a significant influence on the results.Moreover,high-order surface waves should be considered for complex strata,while small-size arrays tended to yield high-frequency dispersion information at quiet observation sites,thus improving the resolution of shallow strata.Therefore,it is necessary to consider the influences of hypocenter distribution,array size,and high-order surface waves on exploration results in microtremor exploration.

Key wordsmicrotremor signal    normal mode superposition    microtremor exploration    dispersion curve    spatial autocorrelation method
收稿日期: 2022-06-16      修回日期: 2023-02-01      出版日期: 2023-08-20
ZTFLH:  P631  
基金资助:中国科学院重点部署项目(ZDRW-ZS-2021-3-1);福建理工大学科研发展基金(GY-Z17157)
作者简介: 李传金(1982-),男,博士,副教授,主要从事微动勘探研究工作。Email:licj04@126.com
引用本文:   
李传金, 王强, 渐翔, 郑涛, 詹素华, 陈绍伟. 微动信号模拟及其在微动勘探中的应用[J]. 物探与化探, 2023, 47(4): 1040-1047.
LI Chuan-Jin, WANG Qiang, JIAN Xiang, ZHENG Tao, ZHAN Su-Hua, CHEN Shao-Wei. Microtremor signal simulation and its application in microtremor exploration. Geophysical and Geochemical Exploration, 2023, 47(4): 1040-1047.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1303      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I4/1040
序号 层厚
度/m
纵波速度/
(m·s-1)
横波速度/
(m·s-1)
密度/
(g·cm-3)
1 10 1 300 200 1.9
2 50 1 800 500 2.2
3 2 500 1 000 2.5
Table 1  地层模型参数
Fig.1  台阵布置
Fig.2  震源分布
Fig.3  合成微动信号垂直分量的波形
Fig.4  空间自相关系数
Fig.5  合成微动信号的频谱
Fig.6  理论频散曲线与合成频散曲线对比
Fig.7  使用不同震源距离计算的频散曲线
a—震源距离1~50 m;b—震源距离50~200 m;c—频散曲线对比
Fig.8  使用不同台阵尺寸计算的频散曲线
a—台阵半径R=1 m;b—台阵半径R=100 m;c—频散曲线对比
序号 层厚
度/m
纵波速度/
(m·s-1)
横波速度/
(m·s-1)
密度/
(g·cm-3)
1 10 1300 200 1.9
2 30 1800 500 2.2
3 20 2000 300 2.0
4 2500 1000 2.5
Table 2  含高速硬夹层的地层模型参数
Fig.9  含高速硬夹层的地层模型计算的频散曲线
a—合成微动信号的频散曲线;b—各阶瑞利波能量占比;c—频散曲线对比
[1] Xu P, Ling S, Long G, et al. ESPAC-based 2D mini-array microtremor method and its application in urban rail transit construction planning[J]. Tunnelling and Underground Space Technology, 2021, 115(3):104070.
doi: 10.1016/j.tust.2021.104070
[2] 徐佩芬, 侍文, 凌苏群, 等. 二维微动剖面探测“孤石”:以深圳地铁7号线为例[J]. 地球物理学报, 2012, 55(6):2120-2128.
[2] Xu P F, Shi W, Ling S Q, et al. Mapping spherically weathered "Boulders" using 2D microtremor profiling method:A case study along subway line 7 in Shenzhen[J]. Chinese Journal of Geophysics, 2012, 55(6):2120-2128.
[3] 杜亚楠, 徐佩芬, 凌甦群. 土石混合滑坡体微动探测:以衡阳拜殿乡滑坡体为例[J]. 地球物理学报, 2018, 61(4):1596-1604.
[3] Du Y N, Xu P F, Ling S Q. Microtremor survey of soil-rock mixture landslides:An example of Baidian township,Heng yang City[J]. Chinese Journal of Geophysics, 2018, 61(4):1596-1604.
[4] 徐浩, 吴小平, 盛勇, 等. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6):1512-1519.
[4] Xu H, Wu X P, Sheng Y, et al. Application of microtremor survey method in detection of urban land subsidence[J]. Geophysical and Geochemical Exploration, 2021, 45(6):1512-1519.
[5] 李巧灵, 张辉, 雷晓东, 等. 综合利用多道瞬态面波和微动探测分析斜坡内部结构[J]. 物探与化探, 2022, 46(1):258-267.
[5] Li Q L, Zhang H, Lei X D, et al. Analysis of internal structure of slope by using multi-channel transient surface wave exploration and microtremor survey[J]. Geophysical and Geochemical Exploration, 2022, 46(1):258-267.
[6] 李井冈, 谢朋, 王秋良, 等. 不同台阵形式对微动探测结果的影响[J]. 大地测量与地球动力学, 2020, 40(1):98-103.
[6] Li J G, Xie P, Wang Q L, et al. Influence of different array type on the results of microtremor survey[J]. Journal of Geodesy and Geodynamics, 2020, 40(1):98-103.
[7] 徐佩芬, 杜亚楠, 凌甦群, 等. 微动多阶瑞雷波SPAC系数反演方法及应用研究[J]. 地球物理学报, 2020, 63(10):3857-3867.
[7] Xu P F, Du Y N, Ling S Q, et al. Microtremor survey method based on inversion of the SPAC coefficient of multi-mode Rayleigh waves and its application[J]. Chinese Journal of Geophysics, 2020, 63(10):3857-3867.
[8] Wang J, Wu G, Chen X. Frequency-Bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(4):3708-3723.
doi: 10.1029/2018JB016595
[9] 李雪燕, 陈晓非, 杨振涛, 等. 城市微动高阶面波在浅层勘探中的应用:以苏州河地区为例[J]. 地球物理学报, 2020, 63(1):247-255.
[9] Li X Y, Chen X F, Yang Z T, et al. Application of high-order surface waves in shallow exploration:An example of the Suzhou river,Shanghai[J]. Chinese Journal of Geophysics, 2020, 63(1):247-255.
[10] 周晓华, 陈祖斌, 曾晓献, 等. 交错网格有限差分法模拟微动信号[J]. 吉林大学学报:地球科学版, 2012, 42(3):852-857.
[10] Zhou X H, Chen Z B, Zeng X X, et al. Simulation of microtremor using staggered-grid finite difference method[J]. Journal of Jilin University:Earth Science Edition, 2012, 42(3):852-857.
[11] 杜亚楠. 基于多阶瑞雷波视频散曲线和椭圆率曲线联合反演的微动探测方法研究[D]. 北京: 中国科学院大学, 2019.
[11] Du Y N. The study on the microtremor survey method based on joint inversion of apparent dispersion curves with consideration of both fundamental and higher modes of Rayleigh waves,and ellipticity curve[D]. Beijing: University of Chinese Academy of Sciences, 2019.
[12] 周晓华, 林君, 张怀柱, 等. 微动中多模式面波频散曲线的映射式提取方法[J]. 地球物理学报, 2014, 57(8):2631-2643.
[12] Zhou X H, Lin J, Zhang H Z, et al. Mapping extraction dispersion curves of multi-mode Rayleigh waves in microtremor[J]. Chinese Journal of Geophysics, 2014, 57(8):2631-2643.
[13] Herrmann R B. Computer programs in seismology:An evolving tool for instruction and research[J]. Seismological Research Letters, 2013, 84(6):1081-1088.
doi: 10.1785/0220110096
[14] Gilbert F. Excitation of the normal modes of the earth by earthquake sources[J]. Geophysical Journal of the Royal Astronomical Society, 1971, 22(2):223-226.
[15] Woodhouse J H. The calculation of the eigenfrequencies and eigenfunctions of the free oscillations of the Earth and the Sun[J]. Seismological Algorithms, 1988, 230:321-370.
[16] Dahlen F A, Tromp J. Theoretical global seismology[M]. Princeton: Princeton University Press, 1998.
[17] Yang H Y, Zhao L, Hung S H. Synthetic seismograms by normal-mode summation:A new derivation and numerical examples[J]. Geophysical Journal International, 2010, 183(3):1613-1632.
doi: 10.1111/j.1365-246X.2010.04820.x
[18] Haskell N A. The dispersion of surface waves on multilayered[J]. Bulletin of the Seismological Society America, 1953, 43(1):17-34.
doi: 10.1785/BSSA0430010017
[19] Knopoff L. A matrix method for elastic wave problems[J]. Bulletin of the Seismological Society of America, 1964, 54(1):431-438.
doi: 10.1785/BSSA0540010431
[20] Buchen P W, Ben Hador R. Free-mode surface-wave computations[J]. Geophysical Journal International, 1996, 124(3):869-887.
doi: 10.1111/gji.1996.124.issue-3
[21] Abo Z A. Dispersion function computations for unlimited frequency values[J]. Geophysical Journal International, 1979, 58(1):91-105.
doi: 10.1111/j.1365-246X.1979.tb01011.x
[22] Chen X F. A systematic and efficient method of computing normal modes for multilayered half-space[J]. Geophysical Journal International, 1993, 115(2):391-409.
doi: 10.1111/gji.1993.115.issue-2
[23] 凡友华, 刘家琦, 肖柏勋. 计算瑞利波频散曲线的快速矢量传递算法[J]. 湖南大学学报, 2002, 29(5):25-30.
[23] Fan Y H, Liu J Q, Xiao B X. Fast vector-transfer algorithm for computation of Rayleigh wave dispersion curves[J]. Journal of Hunan University:Natural Sciences Edition, 2002, 29(5):25-30.
[24] Tokimatsu K, Tamura S, Kojima H. Effects of multiple modes on Rayleigh wave dispersion characteristics[J]. Journal of Geotechnical Engineering, 1992, 118(10):1529-1543.
doi: 10.1061/(ASCE)0733-9410(1992)118:10(1529)
[25] Harkrider D G. Surface waves in multilayered elastic media. I. Rayleigh and Love waves from buried sources in a multilayered elastic half-space[J]. Bulletin of the Seismological Society of America, 1964, 54(2):627-679.
doi: 10.1785/BSSA0540020627
[26] Ling S Q. Research on the estimation of phase velocities of surface waves in microtremors[D]. Sapporo: Hokkaidou University, 1994.
[27] 张碧星, 鲁来玉, 鲍光淑. 瑞利波勘探中“之”字形频散曲线研究[J]. 地球物理学报, 2002, 45(2):263-274.
[27] Zhang B X, Lu L Y, Bao G S. A study on zigzag dispersion curves in Rayleigh wave exploration[J]. Chinese Journal of Geophysics, 2002, 45(2):263-274.
[1] 项诸宝, 张大洲, 朱德兵, 李明智, 熊章强. 不同骨料混凝土模型中瑞利波传播特性研究[J]. 物探与化探, 2023, 47(5): 1226-1235.
[2] 李欣欣, 李江, 刘军, 沈鸿雁. 基于改进相移法的煤田地震瑞利波资料处理[J]. 物探与化探, 2022, 46(6): 1470-1476.
[3] 孙旭, 计子琦, 杨庆义, 刘博政. 基于改进麻雀搜索算法的瑞利波频散曲线反演[J]. 物探与化探, 2022, 46(5): 1267-1275.
[4] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[5] 刘辉, 李静, 曾昭发, 王天琪. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4): 951-960.
[6] 董耀, 李光辉, 高鹏举, 任静, 肖娟. 微动勘查技术在地热勘探中的应用[J]. 物探与化探, 2020, 44(6): 1345-1351.
[7] 张保卫, 董晋, 吴华. 粘弹介质勒夫波频散曲线研究及应用[J]. 物探与化探, 2020, 44(3): 599-606.
[8] 邵广周, 岳亮, 李远林, 吴华. 被动源瑞利波两道法提取频散曲线的质量控制方法[J]. 物探与化探, 2019, 43(6): 1297-1308.
[9] 林丹丹, 熊章强, 张大洲. 基于多模式分离的S变换与小波变换提取面波频散曲线对比分析[J]. 物探与化探, 2014, (3): 544-551.
[10] 李杰, 陈宣华, 张交东, 周琦, 刘刚, 刘志强, 徐燕, 李冰, 杨婧. 频率—波数域频散曲线提取方法及程序设计[J]. 物探与化探, 2011, 35(5): 684-688.
[11] 杨小慧, 李德春, 于鹏飞. 煤层中瑞利型槽波的频散特性[J]. 物探与化探, 2010, 34(6): 750-752.
[12] 赵东. 被动源面波勘探方法与应用[J]. 物探与化探, 2010, 34(6): 759-764.
[13] 翟佳羽, 赵园园, 安丁酉. 面波频散反演地下层状结构的蚁群算法[J]. 物探与化探, 2010, 34(4): 476-481.
[14] 夏学礼, 仇恒永, 孙秀容, 王治华, 王书增. 多道瞬态面波勘探频散曲线唯一性问题[J]. 物探与化探, 2008, 32(2): 168-170,174.
[15] 杨天春, 易伟建, 何继善, 吕绍林. 求取道路结构型地层瑞利波频散曲线的方法[J]. 物探与化探, 2005, 29(5): 459-462.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com