Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1486-1497    DOI: 10.11720/wtyht.2024.0142
  “地球物理仪器新技术”专栏(特约专栏主编:邓明) 本期目录 | 过刊浏览 | 高级检索 |
光纤旋转地震仪的主、被动源观测实验与应用
曹瑜珈1(), 陈彦钧2,3(), 李正斌2, 滕云田1, 张丁凡4
1.中国地震局 地球物理研究所,北京 100081
2.北京大学 电子学院,北京 100871
3.中南大学 地球科学与信息物理学院,有色金属成矿预测与地质环境监测教育部重点实验室,湖南 长沙 410083
4.杭州友孚科技有限公司,浙江 杭州 310018
Active/passive source-based observation experiments and applications of fiber-optic rotational seismometers
CAO Yu-Jia1(), CHEN Yan-Jun2,3(), LI Zheng-Bin2, TENG Yun-Tian1, ZHANG Ding-Fan4
1. Institute of Geophysics, China Earthquake Administration, Beijing 100081, China
2. School of Electronics, Peking University, Beijing 100871, China
3. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
4. Hangzhou Youfu Technology Co., Ltd., Hangzhou 310018, China
全文: PDF(9597 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在过去的20年里,高灵敏度环形激光陀螺展示了旋转观测数据在全球地震学中的潜力,而商用光纤三分量旋转地震仪的出现也预示着旋转地震学的发展进入了新的阶段。高灵敏度便携光纤旋转地震仪的场地实验在我国起步稍晚,但其相关的数据分析研究工作已经在国外取得了一定的进展。本文详细介绍了一次主动源和一次天然地震的六分量(6C,平移运动三分量和旋转运动三分量)联合共址观测实验,内容涵盖了实验方案、实施步骤以及后续数据分析。同时,对比分析了实验的相似性和差异性,揭示了可能影响实验结果的主要因素。光纤旋转地震仪与传统地震计需固定在同一块刚性面板上来保证接收信号的一致性,良好的地面耦合以及进行掩埋处理更容易得到高质量的实验数据。同时,实验结果也表明,水体的存在会影响面波表现和P波清晰度等。这些发现不仅丰富了地震旋转观测实验的实践经验,也可为未来旋转观测实验设计提供参考,帮助更好地完成实验,获得更高质量的数据。在数据应用上,本文优化了预处理方案,该方案将主动源两测点后方位角计算精度分别提高了58.8°和50°,被动源两测点的后方位角计算精度分别提高了24.1°和29.4°,证实了该优化方案的可行性。单台六分量的数据应用也表明额外的旋转分量观测可以带来更多的地震波场信息,引入旋转观测可以提高中国目前庞大的地震观测数据的利用率。光纤旋转地震仪拓宽了地震监测领域的技术边界,也为地震学的研究注入了新的活力,为未来地震学的研究开辟出新的可能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹瑜珈
陈彦钧
李正斌
滕云田
张丁凡
关键词 光纤旋转地震仪甲烷主动源实验天然地震观测后方位角计算    
Abstract

In the past two decades, high-sensitivity ring laser gyroscopes have demonstrated the potential of rotational observation data in global seismology. Commercial fiber-optic three-component rotational seismometers have heralded a new development phase of rotational seismography. Field experiments for high-sensitivity portable fiber-optic rotational seismometers in China remain in the initial stage, whereas their relevant data analysis results have been obtained internationally. This study elucidated the co-located observation experiments on six components (6C, including three components of translational motions and three components of rotational motions) of an active source and a natural earthquake, involving experimental schemes, implementation steps, and subsequent data analysis. Moreover, this study revealed the primary factors influencing the experiment results by comparatively analyzing the similarities and differences of experiments. Fiber-optic rotational and conventional seismometers need to be fixed on the same rigid panel to ensure the consistency of received signals. Besides, proper ground coupling and burial processing contribute to high-quality experimental data. The experimental results indicate that water bodies will affect surface wave manifestation and P-wave clarity. These findings, enriching the practical experience in seismic rotational observation experiments, serve as a reference for the design of subsequent rotational observation experiments, thereby assisting in completing the experiments and obtaining higher-quality data. In terms of data application, this study optimized and substantiated the feasibility of the preprocessing scheme, with the backazimuth calculation accuracy improved by 58.8° and 50° at the two active-source measuring points, and by 24.1° and 29.4° at the two passive-source measuring points. The application of six-component seismic data from a single seismic station suggests that additional observation of rotational components can acquire more seismic wavefield information, thus the observation of rotational components can be employed to enhance the utilization of China's massive seismic observation data. Overall, fiber-optic rotational seismometers broaden the boundary of seismic monitoring technology, boost seismology research, and create new possibilities for future earthquake research.

Key wordsfiber-optic rotational seismometer    methane-based active source experiment    seismological observation    backazimuth calculation
收稿日期: 2024-04-01      修回日期: 2024-06-06      出版日期: 2024-12-20
ZTFLH:  P631  
基金资助:地震科技星火计划“地球物理专业设备网络通信协议研制与示范应用”(XH243714B)
通讯作者: 陈彦钧(1997-),男,2024年获北京大学博士学位,现为中南大学特聘副教授,主要从事地球物理光纤传感器及其信号处理研究工作。Email:chenyanjun@csu.edu.cn
引用本文:   
曹瑜珈, 陈彦钧, 李正斌, 滕云田, 张丁凡. 光纤旋转地震仪的主、被动源观测实验与应用[J]. 物探与化探, 2024, 48(6): 1486-1497.
CAO Yu-Jia, CHEN Yan-Jun, LI Zheng-Bin, TENG Yun-Tian, ZHANG Ding-Fan. Active/passive source-based observation experiments and applications of fiber-optic rotational seismometers. Geophysical and Geochemical Exploration, 2024, 48(6): 1486-1497.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.0142      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1486
Fig.1  激光陀螺示意
a—环形激光陀螺G-ring; b—Sagnac效应[22]; c—坐标系和旋转分量命名约定
指标名称 性能数值
灵敏度/(rad·s-1/ H z) 2×10-8
频段/Hz 0.01~125
采样率/Hz 250~400
最大角速率/(rad·s-1) 5
动态范围/dB 160
工作温度/℃ -40~70
尺寸/(mm×mm×mm) 200×200×200
质量/kg 4
Table 1  DP-Rots-3C性能指标
Fig.2  便携式三分量旋转地震仪DP-Rots-3C内部架构
Fig.3  DP-Rots-3C三分量自噪声PSD
Fig.4  单台六分量接收点仪器设置(a)和震源S25及接收点P1、P2位置示意(b)
Fig.5  仪器装备和布设环境示意
Fig.6  邢台ML3.7级地震震中和接收点DCZ、HST示意
Fig.7  甲烷震源接收点P1(a)和P2(b)的时域波形
Fig.8  甲烷震源接收点P1(a)和P2(b)的振幅谱
Fig.9  邢台ML3.7地震接收点DCZ(a)和HST(b)时域波形
Fig.10  邢台ML3.7地震接收点DCZ(a)和HST(b)振幅谱
Fig.11  邢台ML3.7地震接收点DCZ(a)和HST(b)时频谱
地震分类 震中距d 低通截止
频率/Hz
互相关计算
窗口长度/s
微震带宽/s
近震 0°≤d<3° 4 3 -
地方震 3°≤d<10° 2 5 -
远震 d>10° 1 120 5~12
Table 2  旋转数据库预处理参数[26]
Fig.12  参与甲烷震源后方位角计算的三个分量RUD、ANS和AEW的能谱
(曲线上的数字代表该能谱峰值对应的频率)
Fig.13  甲烷震源接收点P1后方位角计算结果
Fig.14  甲烷震源接收点P2后方位角计算结果
Fig.15  邢台ML3.7地震观测数据后方位角计算结果
[1] Aki K, Richards P G. Quantitative seismology(2nd edition)[M]. Sausalito: University Science Books, 2002.
[2] Lee W H K, Celebi M, Todorovska M I, et al. Introduction to the special issue on rotational seismology and engineering applications[J]. Bulletin of the Seismological Society of America, 2009, 99(2B):945-957.
[3] Charles F R. Elementary seismology[M].San Francisco: W. H.Freeman, 1958.
[4] Bouchon M, Aki K. Strain,tilt,and rotation associated with strong ground motion in the vicinity of earthquake faults[J]. Bulletin of the Seismological Society of America, 1982, 72(5):1717-1738.
[5] Oldham R. Report on the great earthquake of June 12th,1897[J]. Gedogical Magazine, 1900, 7(7):331-333.
[6] 刘庚, 刘文义, 路珍, 等. 地面运动旋转分量观测综述——以中国台湾地区旋转运动观测为例[J]. 地球物理学进展, 2020, 35(2):422-432.
[6] Liu G, Liu W Y, Lu Z, et al. Review of the measurement of rotational component in ground motions:A case study of rotating motion observation in Taiwan,China[J]. Progress in Geophysics, 2020, 35(2):422-432.
[7] 王赟, 孙丽霞, 李栋青, 等. 勘探地震中的六分量观测[J]. 石油物探, 2021, 60(1):13-24,33.
doi: 10.3969/j.issn.1000-1441.2021.01.002
[7] Wang Y, Sun L X, Li D Q, et al. Six-component observation for exploration seismology[J]. Geophysical Prospecting for Petroleum, 2021, 60(1):13-24,33.
doi: 10.3969/j.issn.1000-1441.2021.01.002
[8] Stedman S J. Spoiler problems in peace processes[J]. International Security, 1997, 22(2):5-53.
[9] Schreiber K U, Wells J P R. Invited Review Article:Large ring lasers for rotation sensing[J]. Review of Scientific Instruments, 2013, 84(4):87-281.
[10] McLeod D P, Stedman G E, Webb T H, et al. Comparison of standard and ring laser rotational seismograms[J]. Bulletin of the Seismological Society of America, 1998, 88(6):1495-1503.
[11] Muyzert E, Kashubin A, Kragh E, et al. Land seismic data acquisition using rotation sensors[C]// Proceedings 74th EAGE Conference and Exhibition incorporating EUROPEC, 2012.
[12] Igel H, Nader M F, Kurrle D, et al. Observations of Earth’s toroidal free oscillations with a rotation sensor:The 2011 magnitude 9.0 Tohoku-Oki earthquake[J]. Geophysical Research Letters, 2011, 38(21):L21303.
[13] Tanimoto T, Hadziioannou C, Igel H, et al. Estimate of Rayleigh-to-Love wave ratio in the secondary microseism by colocated ring laser and seismograph[J]. Geophysical Research Letters, 2015, 42(8):2650-2655.
[14] Bernauer F, Wassermann J, Guattari F, et al. BlueSeis3A:Full characterization of a 3C broadband rotational seismometer[J]. Seismological Research Letters, 2018, 89(2A):620-629.
[15] Donner S, Bernauer M, Igel H. Inversion for seismic moment tensors combining translational and rotational ground motions[J]. Geophysical Journal International, 2016, 207(1):562-570.
[16] Yuan S H, Gessele K, Gabriel A A, et al. Seismic source tracking with six degree-of-freedom ground motion observations[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(3):1-22.
[17] Yuan S H, Simonelli A, Lin C J, et al. Six degree-of-freedom broadband ground-motion observations with portable sensors:Validation,local earthquakes,and signal processing[J]. The Bulletin of the Seismological Society of America, 2020, 110(3):953-969.
[18] Reinwald M, Bernauer M, Igel H, et al. Improved finite-source inversion through joint measurements of rotational and translational ground motions:A numerical study[J]. Solid Earth, 2016, 7(5):1467-1477.
[19] 周聪, 曾祥芝, 王庆良, 等. 基于地倾斜数据的九寨沟Ms7.0地震旋转运动场构建[J]. 中国科学:地球科学, 2019, 49(5):811-821.
[19] Zhou C, Zeng X Z, Wang Q L, et al. Rotational motions of the Ms7.0 Jiuzhaigou earthquake with ground tilt data[J]. Scientia Sinica:Terrae, 2019, 49(5):811-821.
[20] 陈锋, 王赟, 李维, 等. 利用单点六分量地震提取面波频散谱的数值验证[J]. 地球物理学报, 2023, 66(10):4269-4278.
[20] Chen F, Wang Y, Li W, et al. Numerical verification of extracting surface wave dispersion spectrum from a single point six-componentseismic observation[J]. Chinese Journal of Geophysics, 2023, 66(10):4269-4278.
[21] 李维, 郭高源, 王赟, 等. 两种可控震源的浅层地震六分量波场特征[J]. 工程地球物理学报, 2022, 19(5):716-728.
[21] Li W, Guo G Y, Wang Y, et al. Six-component wave fields characteristics of shallow earthquake of two vibroseises[J]. Chinese Journal of Engineering Geophysics, 2022, 19(5):716-728.
[22] Igel H, Schreiber U, Flaws A, et al. Rotational motions induced by the M8.1 Tokachi-Oki earthquake,September 25,2003[J]. Geophysical Research Letters, 2005, 32(8):235-256.
[23] Chen Y J, Zhu L X, Wang W B, et al. Differential-mode and common-mode measurements based on fiber-optic gyroscopes[C]// AOPC:Optic Fiber Gyro, 2023.
[24] He D, Wu Y J, Li Y L, et al. Stability improvement enabled by four-state modulation in dual-polarization fiber optic gyroscopes[J]. Optics Communications, 2019, 452(1):68-73.
[25] Wang W T, Wang X, Meng C M, et al. Characteristics of the seismic waves from a new active source based on methane gaseous detonation[J]. Earthquake Research in China, 2019, 33(2):354-366.
[26] Salvermoser J, Hadziioannou C, Hable S, et al. An event database for rotational seismology[J]. Seismological Research Letters, 2017, 88(3):935-941.
[1] 姜国庆, 郝社锋, 喻永祥, 杜建国, 李明, 尚通晓, 宋京雷. 基于三维电阻率反演的滑坡地质灾害调查——以无锡市雪浪山景区滑坡为例[J]. 物探与化探, 2024, 48(6): 1720-1729.
[2] 牟晓东. 基于颜色融合技术的综合跨孔层析岩溶探测方法[J]. 物探与化探, 2024, 48(6): 1730-1740.
[3] 杨浩, 邹杰, 程丹丹, 于景兰. 探地雷达在临海市古长城内部结构检测中的应用分析[J]. 物探与化探, 2024, 48(6): 1741-1746.
[4] 葛为中, 梁炳和, 高建东, 吕玉增, 陈龙. 基于借线遥控电极阵列的二维/三维电法勘探[J]. 物探与化探, 2024, 48(6): 1437-1447.
[5] 王洁, 王猛, 任志滨, 王宸韬, 王会敏. 海洋可控源电磁的任意频率波形产生技术研究[J]. 物探与化探, 2024, 48(6): 1448-1454.
[6] 康利利, 杨永友, 王中兴, 陈凯, 何朋, 王绪哲, 丁古巧, 李子航. 石墨烯基电场传感器研发与测试[J]. 物探与化探, 2024, 48(6): 1463-1470.
[7] 贾松, 何展翔, 杨辉, 幺永超, 王彩霞. 基于MEMS的节点式旋转地震仪的研发及H/V谱比测试[J]. 物探与化探, 2024, 48(6): 1471-1478.
[8] 周胜, 陈兴朋, 王俊, 亓庆新, 张志清, 潘纪敏, 席振铢, 羊春华. 便携式等值反磁通瞬变电磁系统及试验应用[J]. 物探与化探, 2024, 48(6): 1479-1485.
[9] 巩奕轩, 姜凯, 高敬语, 朱万华, 陈凯. 海底光泵磁力仪研制[J]. 物探与化探, 2024, 48(6): 1498-1506.
[10] 张珈畅, 李涛, 梁宏刚, 费娥, 孙致远, 岳彤. 塔里木盆地二八台地区走滑断裂体系研究[J]. 物探与化探, 2024, 48(6): 1588-1598.
[11] 王兴宇, 刘艳丽, 王通, 荣立新. 银额盆地西部地震勘探试验研究进展及效果[J]. 物探与化探, 2024, 48(6): 1599-1608.
[12] 张晓团, 李新林, 周斌, 高维强. 广域电磁法在北秦岭蟒岭矿集区深部找矿中的应用——以腰庄矿区为例[J]. 物探与化探, 2024, 48(6): 1609-1617.
[13] 张永升, 黄超, 刘军, 张永恒, 王兴建, 薛雅娟. 地震信号倒谱分解技术及其在超深层碳酸盐岩储层烃类检测中的应用[J]. 物探与化探, 2024, 48(6): 1618-1625.
[14] 赵柏儒, 李厚朴, 张恒磊. 磁异常三维反演在磁铁矿勘查中的应用[J]. 物探与化探, 2024, 48(6): 1626-1632.
[15] 王志宏, 张诺亚, 胡杉杉, 郑梓强, 刘玉超, 周正, 孙怀凤. 无人机噪声对半航空瞬变电磁数据的影响分析[J]. 物探与化探, 2024, 48(6): 1633-1642.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com