Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1471-1478    DOI: 10.11720/wtyht.2024.0140
  “地球物理仪器新技术”专栏(特约专栏主编:邓明) 本期目录 | 过刊浏览 | 高级检索 |
基于MEMS的节点式旋转地震仪的研发及H/V谱比测试
贾松1(), 何展翔2,3,4, 杨辉4,3,2, 幺永超2,3,4, 王彩霞1()
1.北京信息科技大学 理学院,北京 100192
2.南方科技大学 地球与空间科学系,广东 深圳518055
3.南方科技大学 广东省地球物理高精度成像技术重点实验室,广东 深圳 518055
4.南方科技大学 深圳市深远海油气勘探技术重点实验室,广东 深圳 518055
Development of a nodal rotational seismometer with a micro-electro-mechanical system sensor and testing of H/V spectral ratios
JIA Song1(), HE Zhan-Xiang2,3,4, YANG Hui4,3,2, YAO Yong-Chao2,3,4, WANG Cai-Xia1()
1. School of Applied Science, Beijing Information Science & Technology University, Beijing 100192, China
2. Department of Earth and Space Science, Southern University of Science and Technology, Shenzhen 518055, China
3. Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology, Southern University of Science and Technology, Shenzhen 518055, China
4. Shenzhen Key Laboratory of Deep Offshore Oil and Gas Exploration Technology, Southern University of Science and Technology, Shenzhen 518055, China
全文: PDF(3283 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

针对当前日益增长的大规模野外地震采集需求,综合考虑仪器的功能性、经济性与部署便捷性,研发一种基于MEMS传感器的低成本多功能节点式旋转地震仪RBWL。仪器采用低成本、低功耗的MEMS传感器进行三分量平动(TxTyTz)以及三分量旋转(RxRyRz)进行地震信号采集。为降低环境因素对测量的影响,系统自动记录温度、姿态等实时信息,并对测量结果进行相应补偿校正。为实现采集节点的实时监控与数据传输,系统集成了基于4G—云端—客户端的数据传输链路,经实测最大数据传输速率可达100 Mbps。通过开展H/V谱比的实验,不仅验证了仪器系统功能与主要性能参数,而且证明了其在工程物探中的应用效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾松
何展翔
杨辉
幺永超
王彩霞
关键词 MEMS旋转地震仪无线数据传输H/V谱比    
Abstract

In response to the increasing demand for large-scale field seismic acquisition, this study developed a low-cost multifunctional nodal rotational seismometer (RBWL) with a micro-electro-mechanical system (MEMS) sensor, considering the functionality, economic feasibility, and the ease of arrangement. The RBWL employs a low-cost and low-power MEMS sensor to acquire seismic signals, involving three-component translational motions (Tx,Ty,Tz) and three-component rotational motions (Rx,Ry,Rz). To reduce the impacts of environmental factors on measurements, the system of the RBWL automatically records real-time information including temperature and attitude while performing compensation correction on the measurement results. For real-time monitoring and data transmission at acquisition nodes, the system establishes a data transmission link integrating 4G, cloud, and client, with the measured maximum data transmission rate up to 100 Mbps. The testing of H/V spectral ratios verifies the system functions and principal performance parameters of the RBWL and its effectiveness in engineering physical exploration.

Key wordsMEMS    rotational seismometer    wireless data transmission    H/V spectral ratio
收稿日期: 2024-04-01      修回日期: 2024-07-29      出版日期: 2024-12-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目“微地震监测复杂结构偏移成像与速度建模研究”(41974122);广东省地球物理高精度成像技术重点实验室项目(2022B1212010002);北京市教育委员会科研计划项目(KZ20231123250);深圳市科技计划项目“深海深地资源探测技术系统研发”(KQTD 20170810111725321);深圳市深远海油气勘探技术重点实验室项目(ZDSYS20190902093007855)
通讯作者: 王彩霞(1972-),女,博士,教授,研究方向为信息处理及仪器研制。Email: caxwangee@bistu.edu.cn
引用本文:   
贾松, 何展翔, 杨辉, 幺永超, 王彩霞. 基于MEMS的节点式旋转地震仪的研发及H/V谱比测试[J]. 物探与化探, 2024, 48(6): 1471-1478.
JIA Song, HE Zhan-Xiang, YANG Hui, YAO Yong-Chao, WANG Cai-Xia. Development of a nodal rotational seismometer with a micro-electro-mechanical system sensor and testing of H/V spectral ratios. Geophysical and Geochemical Exploration, 2024, 48(6): 1471-1478.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.0140      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1471
Fig.1  节点式旋转地震仪硬件系统示意
技术参数 取值范围
最大线性加速度/g ±2
线性加速度最高分辨率/(LSB·g-1) 16384
角速度最高分辨率/(rad·s-1) 4E-5
姿态角度量程/(°) xy:±180,z:±90
温度量程/℃ -40~85
频率响应范围/Hz 7~500
采样率/Hz 100、200、500、1000
工作温度/℃ -40~85
实时传输连续工作时间@25℃/d 3
存储容量/G 64
长、宽、高/mm 100×75×120
功耗/W <2.5
Table 1  RBWL系统主要技术参数
Fig.2  加速度计阵列示意
Fig.3  数据传输示意
Fig.4  RBWL客户端软件示意
Fig.5  软件功能模块示意
Fig.6  数据显示及设备状态监测界面示意
Fig.7  数据可视化界面示意
(加速度、角速度、姿态角度、磁场)
Fig.8  参数配置及数据显示界面示意
仪器名称 仪器类型 观测类型 观测分量 精度 部署难度 功耗 体积 质量
RBWL MEMS 平动+旋转 6
6DOF 速度计阵列 平动+旋转 6
R-1 电化学 旋转 3
G-Ring 激光陀螺仪 旋转 3 超高 超高 超高 超大 超大
FOSREM 光纤陀螺仪 旋转 3
Titan 加速度计 平动 3
Table 2  RBWL与同类测量设备比较
Fig.9  测试场地布置示意
fr/Hz Lw最
小值
/s
最小有
效周期
数/nc
最小窗
口数
最小有用
信号持续
时间/s
建议的最
短记录持
续时间/min
5 5 200 10 40 3
10 5 200 10 20 2
Table 3  共振频率与记录时长关系
Fig.10  H/V谱比曲线
a—RBWL的3个加速度分量绘制的H/V谱比曲线;b—RBWL计算的旋转分量绘制的H/V谱比曲线;c—节点地震仪三轴数据绘制的H/V谱比曲线
fr/Hz h/m 误差/%
44.82 0.62 3.3
45.62 0.61 1.7
45.94 0.61 1.7
Table 4  土层厚度h估算结果
[1] Hudnut K W. Earthquake geodesy and hazard monitoring[J]. Review of Geophysics, 33(S1): 1995,249-255.
[2] 严炎, 崔一飞, 周开来, 等. 基于地震动信号分析的地质灾害过程重构方法研究与应用[J]. 工程地质学报, 2021, 29(1):125-136.
[2] Yan Y, Cui Y F, Zhou K L, et al. Research and application of geological hazards process reconstruction based on seismic signal analysis[J]. Journal of Engineering Geology, 2021, 29(1):125-136.
[3] 刘庚, 刘文义, 路珍, 等. 地面运动旋转分量观测综述——以中国台湾地区旋转运动观测为例[J]. 地球物理学进展, 2020, 35(2):422-432.
[3] Liu G, Liu W Y, Lu Z, et al. Review of the measurement of rotational component in ground motions:A case study of rotating motion observation in Taiwan,China[J]. Progress in Geophysics, 2020, 35(2):422-432.
[4] 王赟, 孙丽霞, 李栋青, 等. 勘探地震中的六分量观测[J]. 石油物探. 2021, 60(1):13-24.
doi: 10.3969/j.issn.1000-1441.2021.01.002
[4] Wang Y, Sun L X, Li D Q, et al. Six-component observation for exploration seismology[J]. Geophysical Prospecting for Petroleum. 2021, 60(1):13-24.
doi: 10.3969/j.issn.1000-1441.2021.01.002
[5] Zhao B L. Application of multi-component seismic exploration in the exploration and production of lithologic gas reservoirs[J]. Petroleum Exploration and Development, 2008, 35(4):397-412.
[6] 王丹, 魏水建, 贾跃玮, 等. 地热资源地震勘探方法综述[J]. 物探与化探, 2015, 39(2):253-261.
[6] Wang D, Wei S J, Jia Y W, et al. An overview of methods for geothermal seismic exploration[J]. Geophysical and Geochemical Exploration, 2015, 39(2):253-261.
[7] 秦林鹏, 王赟, 张东明, 等. 六分量地震观测在工程勘查中的应用试验[J]. 地球物理学报, 2024, 67(1):308-317.
[7] Qin L P, Wang Y, Zhang D M, et al. A case study:Application of six-component seismic observations in urban engineering investigation[J]. Chinese Journal of Geophysics, 2024, 67(1):308-317.
[8] 岩巍. 地震勘探节点采集系统设计的要点[J]. 物探与化探, 2022, 46(3):570-575.
[8] Yan W. Key points of the design of a nodal acquisition system for seismic exploration[J]. Geophysical and Geochemical Exploration, 2022, 46(3):570-575.
[9] 陈畅, 王赟, 郭高源, 等. 几种旋转地震仪在深部地下巷道的观测对比[J]. 地球物理学报, 2022, 65(12):4569-4582.
[9] Chen C, Wang Y, Guo G Y, et al. Deep underground observation comparison of rotational seismometers[J]. Chinese Journal of Geophysics, 2022, 65(12):4569-4582.
[10] Li Z H, Van der Baan M. Tutorial on rotational seismology and its applications in exploration geophysics[J]. Geophysics, 2017, 82(5):W17-W30.
[11] Nawrocki D, Mendecki M J, Teper L. Estimation of the resonance frequency of rotational and translational signals evoked by mining-induced seismicity[J]. Frontiers in Earth Science, 2024, 12:2296-6463.
[12] Huang B S. Ground rotational motions of the 1999 Chi-Chi,Taiwan earthquake as inferred from dense array observations[J]. Geophysical Research Letters, 2003, 30(6):1307-1310.
[13] Lin C J, Liu C C, Lee W H K. Recording rotational and translational ground motions of two TAIGER explosions in northeastern Taiwan on 4 March 2008[J]. Bulletin of the Seismological Society of America, 2009, 99(2B):1237-1250.
[14] 李栋青, 王赟, 孙丽霞. 差分法计算地震动旋转分量[J]. 地球科学, 2021, 46(1):369-380.
[14] Li D Q, Wang Y, Sun L X. Calculating rotational components of ground motions by finite difference method[J]. Earth Science, 2021, 46(1):369-380.
[15] 秦彤威, 王少曈, 冯宣政. 微动H/V谱比方法[J]. 地球与行星物理论评, 2021, 52(6):587-622.
[15] Qin T W, Wang S T, Feng X Z, Lu L Y. 2021. A review on microtremor H/V spectral ratio method[J]. Reviews of Geophysics and Planetary Physics, 52(6):587-622.
[16] 秦彤威, 冯宣政, 王少曈, 等. Rayleigh波ZH幅度比(椭率)研究综述[J]. 地球物理学进展, 2021, 36(1):39-66.
[16] Qin T W, Feng X Z, Wang S T, et al. Review on rayleigh wave ZH amplitude ratio(ellipticity)[J]. Progress in Geophysics, 2021, 36(1):39-66.
[17] Gosar A. A microtremor HVSR study of the seismic site effects in the area of the town of brežice (se slovenia)[J]. Acta Geotechnica Slovenica, 2009, 6:31-45.
[18] Arai H, Tokimatsu K. S-wave velocity profiling by inversion of microtremor H/V spectrum[J]. Bulletin of the Seismological Society of America, 2004, 94(1):53-63.
[19] Nakamura Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface[J]. Railway Technical Research Institute,Quarterly Reports, 1989, 30(1):25-33.
[20] Nogoshi M, Igarashi T. On the amplitude characteristics of micro-tremor,Part II[J]. Journal of the Seismological Society of Japan, 1971, 24(1):26-40.
[21] Parolai S, Galiana-Merino J J. Effect of transient seismic noise on estimates of H/V spectral ratios[J]. Bulletin of the Seismological Society of America, 2006, 96(1):228-236.
[22] Fäh D, Kind F, Giardini D. Inversion of local S-wave velocity structures from average H/V ratios,and their use for the estimation of site-effects[J]. Journal of Seismology, 2003, 4(7):449-467.
[23] Bonnefoy-Claudet S, Cotton F, Bard P-Y. The nature of noise wavefield and its applications for site effects studies[J]. Earth-Science Reviews, 2006, 79(3-4):205-227.
[24] Bonnefoy-Claudet S, Köhler A, Cornou C, et al. Effects of love waves on microtremor H/V ratio[J]. Bulletin of the Seismological Society of America, 2008, 98(1):288-300.
[25] Bard P Y, Acerra C, Aguacil G, et al. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements,processing and interpretation[J]. Bulletin of Earthquake Engineering, 2008, 6(4):1-2.
[26] Abu Z N, Corradini E, Bignardi S, et al. The passive seismic technique ‘HVSR’ as a reconnaissance tool for mapping paleo-soils:The case of the pilastri archaeological site,northern italy[J]. Archaeol ogical Prospection., 2017, 24(3):245-258.
[1] 赵朋朋. 基于MEMS的槽波地震仪的研制[J]. 物探与化探, 2024, 48(6): 1684-1692.
[2] 曹瑜珈, 陈彦钧, 李正斌, 滕云田, 张丁凡. 光纤旋转地震仪的主、被动源观测实验与应用[J]. 物探与化探, 2024, 48(6): 1486-1497.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com