Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1609-1617    DOI: 10.11720/wtyht.2024.0056
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
广域电磁法在北秦岭蟒岭矿集区深部找矿中的应用——以腰庄矿区为例
张晓团1(), 李新林1,2(), 周斌1,2,3, 高维强1
1.陕西省地质调查院,陕西 西安 710004
2.陕西省地质调查规划研究中心,陕西 西安 710068
3.中国地质大学(北京) 地球科学与资源学院,北京 100083
Application of wide-field electromagnetic sounding method to deep prospecting in the Mangling ore concentration area in North Qinling: A case study of the Yaozhuang ore district
ZHANG Xiao-Tuan1(), LI Xin-Lin1,2(), ZHOU Bin1,2,3, GAO Wei-Qiang1
1. Shaanxi Institute of Geological Survey, Xi'an 710004, China
2. Shaanxi Geological Survey Planning Research Center, Xi'an 710068, China
3. School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China
全文: PDF(6000 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

蟒岭矿集区岩浆活动强烈,是近年来北秦岭构造带深部找矿的热点地区,区内钼矿的形成与晚侏罗世酸性小岩体关系密切。为实现该区深部找矿突破,本文在重力异常圈定的腰庄隐伏岩体上开展了广域电磁法测量。测量结果显示,深部存在明显的高阻异常,推断高阻异常的凸起部位为腰庄隐伏岩体;其电阻率反演结果基本刻画了该岩体的顶面变化特征,推断顶面海拔介于-300~620 m、南北宽度1 300~1 600 m。通过对优选出的深部成矿有利部位进行钻探验证,揭示了隐伏岩体和隐伏钼矿体的存在。结果表明,广域电磁法探测深度大、分辨率高,是蟒岭矿集区深部找矿的有效勘查方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓团
李新林
周斌
高维强
关键词 广域电磁法深部找矿蟒岭矿集区北秦岭钼矿体    
Abstract

The Mangling ore concentration area with intense magmatic activity has become a focal area for deep prospecting in the North Qinling tectonic belt in recent years. The formation of molybdenum deposits in this area is closely related to small Late Jurassic acidic intrusions. To achieve breakthroughs in deep ore prospection within this area, this study conducted the wide-field electromagnetic sounding over the concealed Yaozhuang intrusion delineated based on gravity anomalies. The results indicate the presence of pronounced high-resistivity anomalies at depth, and it is inferred that the protruding part of the anomalies corresponds to the concealed Yaozhuang intrusion. The resistivity inversion results roughly delineated the variations in the top surface of the intrusion, with the elevations and N-S width of the top surface estimated at -300~620 m and 1300~1600 m, respectively. Drilling in the most favorable deep mineralized part confirmed the presence of the concealed intrusion and concealed molybdenum ore bodies. The results of this study demonstrate that the wide-field electromagnetic sounding method exhibits great sounding depths and high resolutions, serving as an effective method for deep ore prospecting in the Mangling ore concentration area.

Key wordswide-field electromagnetic method(WFEM)    deep exploration    Mangling ore concentration area    North Qinling    molybdenum ore body
收稿日期: 2024-02-20      修回日期: 2024-09-03      出版日期: 2024-12-20
ZTFLH:  P631  
基金资助:陕西省地质勘查基金项目(61201908334);陕西省公益性地质调查项目(202112);陕西省公益性地质调查项目(202308)
通讯作者: 李新林(1966-),男,正高级工程师,现从事矿产勘查工作。Email:541475896@qq.com
引用本文:   
张晓团, 李新林, 周斌, 高维强. 广域电磁法在北秦岭蟒岭矿集区深部找矿中的应用——以腰庄矿区为例[J]. 物探与化探, 2024, 48(6): 1609-1617.
ZHANG Xiao-Tuan, LI Xin-Lin, ZHOU Bin, GAO Wei-Qiang. Application of wide-field electromagnetic sounding method to deep prospecting in the Mangling ore concentration area in North Qinling: A case study of the Yaozhuang ore district. Geophysical and Geochemical Exploration, 2024, 48(6): 1609-1617.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.0056      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1609
Fig.1  蟒岭矿集区区域地质简图
1—中—新元古界宽坪岩群;2—晚侏罗世二长花岗岩;3—晚侏罗世花岗斑岩;4—晚侏罗世闪长岩;5—晚侏罗世隐爆角砾岩;6—晚侏罗世闪长玢岩;7—断裂;8—钼矿;9—铅锌矿/铜铅锌矿;10—铜矿;11—腰庄矿区
Fig.2  腰庄矿区地质简图
1—中—新元古界谢湾岩组;2—中—新元古界四岔口岩组;3—中—新元古界广东坪岩组;4—晚侏罗世二长花岗岩;5—晚侏罗世花岗斑岩;6—晚侏罗世闪长玢岩;7—黄铁矿化硅化蚀变岩;8—石英脉;9—铅锌矿体;10—钼钨矿体;11—断层;12—产状;13—腰庄隐伏岩体范围;14—广域电磁法推断钼成矿有利区;15—广域电磁法剖面点位、线号及点号;16—0号勘探线剖面;17—已验证钻孔;18—设计钻孔
填图单位 岩性名称 样品
数/块
ρ/(Ω·m)
变化范围 均值
晚侏罗世
侵入岩体
花岗斑岩 30 169.5~3937.8 1524.0
二长花岗岩 32 254~2450.3 1383.2
中—新元古界
广东坪岩组
钠长阳起片岩 31 68.2~487.7 214.2
中—新元古界
四岔口岩组
黑云石英片岩 31 198.4~1910.9 785.3
Table 1  研究区岩石电性参数统计结果
Fig.3  广域电磁场源布设示意
1—广域电磁法剖面及编号;2—供电极距;3—腰庄隐伏岩体范围;4—高压线
Fig.4  试验点电场和视电阻率随频率变化曲线
Fig.5  GY04剖面视电阻率综合断面
Fig.6  广域电磁法GY04反演电阻率剖面(a)和地质解释(b)
Fig.7  广域电磁法GY05反演电阻率剖面(a)和地质解释(b)
Fig.8  腰庄矿区0号勘探线综合断面图(据周斌等[28]修改)
[1] 李诺, 陈衍景, 张辉, 等. 东秦岭斑岩钼矿带的地质特征和成矿构造背景[J]. 地学前缘, 2007, 14(5):186-198.
[1] Li N, Chen Y J, Zhang H, et al. Molybdenum deposits in East Qinling[J]. Earth Science Frontiers, 2007, 14(5):186-198.
[2] 卢欣祥, 罗照华, 黄凡, 等. 小岩浆大流体成大矿与透岩浆流体成矿作用——以东秦岭—大别山成矿带钼矿床为例[J]. 岩石学报, 2017, 33(5):1554-1570.
[2] Lu X X, Luo Z H, Huang F, et al. “Small” magma and “big” fluid lead to form large scale deposit and transmagmatic fluid mineralization:Take for example of Mo deposits in eastern Qinling-Dabie mountain metallogenic belt[J]. Acta Petrologica Sinica, 2017, 33(5):1554-1570.
[3] 柯昌辉, 王晓霞, 李金宝, 等. 北秦岭马河钼矿区花岗岩类的锆石U-Pb年龄、地球化学特征及其地质意义[J]. 岩石学报, 2012, 28(1):267-278.
[3] Ke C H, Wang X X, Li J B, et al. Geochronology and geological significance of the granites from the Mahe Mo deposit in the North Qinling[J]. Acta Petrologica Sinica, 2012, 28(1):267-278.
[4] 柯昌辉, 王晓霞, 杨阳, 等. 北秦岭南台钼多金属矿床成岩成矿年龄及锆石Hf同位素组成[J]. 中国地质, 2012, 39(6):1562-1576.
[4] Ke C H, Wang X X, Yang Y, et al. Rock-forming and ore-forming ages of the Nantai Mo polymetallic deposit in North Qinling Mountains and its zircon Hf isotope composition[J]. Geology in China, 2012, 39(6):1562-1576.
[5] 张元厚, 毛景文, 简伟, 等. 东秦岭地区钼矿床研究现状及存在问题[J]. 世界地质, 2010, 29(2):188-202.
[5] Zhang Y H, Mao J W, Jian W, et al. Present status of research on molybdenum deposit in eastern Qinling and the problems remained[J]. Global Geology, 2010, 29(2):188-202.
[6] Fan P, Xi A H, Zhou B, et al. Discovery of Yaozhuang stock and deep ore prospecting implication for the western mangling orefield in North Qinling terrane,Central China[J]. Frontiers in Earth Science, 2022, 10:830453.
[7] 周斌, 李新林. 北秦岭蟒岭地区斑岩型—热液脉型钼矿深部找矿勘查技术方法研究[C]// 第二届全国矿产勘查大会, 2023.
[7] Zhou B and Li X L. Research in deep prospecting and exploration technology and method of of porphyry-magmatic hydrothermal molybdenum deposit in Mangling area,North Qinling[C]// The 2nd National Mineral Exploration Conference, 2023.
[8] 滕吉文, 薛国强, 宋明春. 第二深度空间矿产资源探查理念与电磁法找矿实践[J]. 地球物理学报, 2022, 65(10):3975-3985.
[8] Teng J W, Xue G Q, Song M C. Theory on exploring mineral resources in the second deep space and practices with electromagnetic method[J]. Chinese Journal of Geophysics, 2022, 65(10):3975-3985.
[9] 滕吉文. 高精度地球物理学是创新未来的必然发展轨迹[J]. 地球物理学报, 2021, 64(4):1131-1144.
doi: 10.6038/cjg2021N0100
[9] Teng J W. High-precision geophysics:The inevitable development track of the innovative future[J]. Chinese Journal of Geophysics, 2021, 64(4):1131-1144.
[10] 杨海涛, 刘新伟, 汪超, 等. 蠎西寺沟斑岩—矽卡岩型钨钼矿物化探异常特征及找矿模型[J]. 地质与勘探, 2022, 58(5):929-939.
[10] Yang H T, Liu X W, Wang C, et al. Geophysical and geochemical anomaly characteristics and ore prospecting model for the sigou porphyry-skarn type tungsten-molybdenum deposit in mangxi area[J]. Geology and Exploration, 2022, 58(5):929-939.
[11] 程红军, 陈川, 展新忠, 等. 隐伏矿床成矿预测理论与方法新进展[J]. 地质与勘探, 2017, 53(3):456-463.
[11] Cheng H J, Chen C, Zhan X Z, et al. New progress in the prediction theory and prospecting method for concealed deposits[J]. Geology and Exploration, 2017, 53(3):456-463.
[12] 陈后扬, 李帝铨, 凌帆, 等. 朱溪钨铜矿的广域电磁法深部探测[J]. 中国有色金属学报, 2022, 32(10):3227-3243.
[12] Chen H Y, Li D Q, Ling F, et al. Deep exploration of wide field electromagnetic method in Zhuxi W-Cu deposit[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(10):3227-3243.
[13] 何继善. 广域电磁测深法研究[J]. 中南大学学报:自然科学版, 2010, 41(3):1065-1072.
[13] He J S. Wide field electromagnetic sounding methods[J]. Journal of Central South University:Science and Technology Edition, 2010, 41(3):1065-1072.
[14] 何继善. 大深度高精度广域电磁勘探理论与技术[J]. 中国有色金属学报, 2019, 29(9):1809-1816.
[14] He J S. Theory and technology of wide field electromagnetic method[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9):1809-1816.
[15] 何继善. 广域电磁法理论及应用研究的新进展[J]. 物探与化探, 2020, 44(5):985-990.
[15] He J S. New research progress in theory and application of wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2020, 44(5):985-990.
[16] 何继善. 伪随机信号广域电磁法[M]. 北京: 高等教育出版社, 2023.
[16] He J S. Wide-area electromagnetic method of pseudo-random signal[M]. Beijing: Higher Education Press, 2023.
[17] 凌帆, 朱裕振, 周明磊, 等. 广域电磁法在南华北盆地长山隆起页岩气资源潜力评价中的应用[J]. 物探与化探, 2017, 41(2):369-376.
[17] Ling F, Zhu Y Z, Zhou M L, et al. Shale gas potential assessment of Changsan uplift area in southern North China basin by using wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2017, 41(2):369-376.
[18] 王润生, 张保涛, 柳森, 等. 胶东牟平—乳山成矿带金青顶金矿广域电磁法探测效果分析[J]. 地质与勘探, 2022, 58(2):381-390.
[18] Wang R S, Zhang B T, Liu S, et al. Application effects of the wide field electromagnetic method in the jinqingding gold deposit in Muping- Rushan metallogenic belt,Jiaodong peninsula[J]. Geology and Exploration, 2022, 58(2):381-390.
[19] 邵炳松, 阮传侠, 赵苏民, 等. 广域电磁法在郑州地区深部地热资源勘查中的应用[J]. 地质与勘探, 2023, 59(2):316-327.
[19] Shao B S, Ruan C X, Zhao S M, et al. The application of wide field electromagnetic method to deep geothermal resources exploration in Zhengzhou area[J]. Geology and Exploration, 2023, 59(2):316-327.
[20] 王丹丹, 张交东, 刘旭锋, 等. 广域电磁法在豫西地区济源凹陷古生界油气勘探中的应用[J]. 地质与勘探, 2023, 59(2):328-336.
[20] Wang D D, Zhang J D, Liu X F, et al. Application of the wide field electromagnetic method to Paleozoic oil and gas exploration in the Jiyuan depression of western Henan Province[J]. Geology and Exploration, 2023, 59(2):328-336.
[21] 董云鹏, 张国伟, 朱炳泉. 北秦岭构造属性与元古代构造演化[J]. 地球学报, 2003, 24(1):3-10.
[21] Dong Y P, Zhang G W, Zhu B Q. Proterozoic tectonics and evolutionary history of the North Qinling terrane[J]. Acta Geosicientia Sinica, 2003, 24(1):3-10.
[22] 王洪军, 熊玉新. 广域电磁法在胶西北金矿集中区深部探测中的应用研究[J]. 物探与化探, 2020, 44(5):1039-1047.
[22] Wang H J, Xiong Y X. The application of wide field electromagnetic method to deep exploration in Jiaoxibei (northwest Shandong) gold concentration area[J]. Geophysical and Geochemical Exploration, 2020, 44(5):1039-1047.
[23] 李帝铨, 肖教育, 张继峰, 等. WFEM与CSAMT在新元煤矿富水区探测效果对比[J]. 物探与化探, 2021, 45(5):1359-1366.
[23] Li D Q, Xiao J Y, Zhang J F, et al. Comparison of application effects of WFEM and CSAMT in water-rich area of Xinyuan Coal Mine[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1359-1366.
[24] 汤中立, 焦建刚, 闫海卿, 等. 小岩体成(大)矿理论体系[J]. 中国工程科学, 2015, 17(2):4-18,2.
[24] Tang Z L, Jiao J G, Yan H Q, et al. Theoretical system for(large) deposit formed by smaller intrusion[J]. Strategic Study of CAE, 2015, 17(2):4-18,2.
[25] 汤中立, 钱壮志, 姜常义, 等. 岩浆硫化物矿床勘查研究的趋势与小岩体成矿系统[J]. 地球科学与环境学报, 2011, 33(1):1-9.
[25] Tang Z L, Qian Z Z, Jiang C Y, et al. Trends of research in exploration of magmatic sulfide deposits and small intrusions metallogenic system[J]. Journal of Earth Sciences and Environment, 2011, 33(1):1-9.
[26] Sillitoe R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1):3-41.
[27] 金露英, 秦克章, 李光明, 等. 斑岩钼—热液脉状铅锌银矿成矿系统特征、控制因素及勘查指示[J]. 岩石学报, 2020, 36(12):3813-3839.
[27] Jin L Y, Qin K Z, Li G M, et al. Characteristics,controlling factors and exploration implications of porphyry molybdenum-hydrothermal vein-style lead-zinc-silver metallogenic systems[J]. Acta Petrologica Sinica, 2020, 36(12):3813-3839.
[28] 周斌, 范鹏, 杨文博, 等. 陕西典型小岩体成矿预测与勘查示范成果报告[R]. 西安市:陕西省地质调查规划研究中心, 2024.
[28] Zhou B, Fan P, Yang W B, et al. Report on metallogenic prediction and exploration demonstration of typical small rock masses in Shaanxi province[R]. Xi’an:Shaanxi geological survey planning research center, 2024.
[1] 孔晓敏, 孙超, 周宜康, 田思清, 苏海岗, 周明磊. 地震方法在胶东地区西林断裂带深部金矿找矿预测中的应用与指示[J]. 物探与化探, 2024, 48(4): 979-985.
[2] 梁维天, 李帝铨, 孙新胜, 王东波, 冯家新, 李浩, 樊金虎. 辽东郑屯地区基于广域电磁法的深孔验证[J]. 物探与化探, 2024, 48(3): 675-683.
[3] 喻忠鸿, 严玲琴, 张占雄, 李鹏, 李凤廷, 付佳. 东昆仑地区打柴沟金矿地球物理特征及深部找矿预测[J]. 物探与化探, 2024, 48(1): 40-47.
[4] 陈伟, 谭友, 曹正端, 廖志权, 张宁发, 傅海晖. 构造原生晕在攻深找盲中的应用——以赣南银坑牛形坝铅锌金银矿床为例[J]. 物探与化探, 2023, 47(4): 892-905.
[5] 张瑾爱, 杨渊, 张林. 基于重力异常的镇安西部隐伏岩体空间分布规律研究[J]. 物探与化探, 2023, 47(3): 618-627.
[6] 游越新, 邓居智, 陈辉, 余辉, 高科宁. 综合物探方法在云南澜沧老厂多金属矿区深部找矿中的应用[J]. 物探与化探, 2023, 47(3): 638-647.
[7] 齐朝华. 广域电磁法在巨厚低阻层下水文地质勘探中的应用——以安徽淮南某煤矿为例[J]. 物探与化探, 2023, 47(3): 700-706.
[8] 胡志方, 罗卫锋, 王胜建, 康海霞, 周惠, 张云枭, 詹少全. 广域电磁法在安页2井压裂监测应用探索[J]. 物探与化探, 2023, 47(3): 718-725.
[9] 王军成, 赵振国, 高士银, 罗传根, 李琳, 徐明钻, 李勇, 袁国境. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2): 321-330.
[10] 杨波, 孙栋华. 东天山某环状熔融岩体航空电磁场特征及深部找矿研究[J]. 物探与化探, 2022, 46(4): 816-823.
[11] 李帝铨, 肖教育, 张继峰, 胡艳芳, 刘最亮, 张新. WFEM与CSAMT在新元煤矿富水区探测效果对比[J]. 物探与化探, 2021, 45(5): 1359-1366.
[12] 朱云起, 李帝铨, 王金海. 基于MySQL的广域电磁法数据处理与解释软件[J]. 物探与化探, 2021, 45(4): 1030-1036.
[13] 陈小龙, 高坡, 程顺达, 王晓青, 罗可. 西藏帮浦东段—笛给铅锌矿区CSAMT异常特征与深部找矿预测[J]. 物探与化探, 2021, 45(2): 361-368.
[14] 屈利军, 王庆, 李波, 姚伟. 综合物探方法在湖南香花岭矿田三合圩矿区深部成矿规律研究中的应用[J]. 物探与化探, 2020, 44(6): 1313-1321.
[15] 何继善. 广域电磁法理论及应用研究的新进展[J]. 物探与化探, 2020, 44(5): 985-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com