Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1498-1506    DOI: 10.11720/wtyht.2024.0144
  “地球物理仪器新技术”专栏(特约专栏主编:邓明) 本期目录 | 过刊浏览 | 高级检索 |
海底光泵磁力仪研制
巩奕轩1(), 姜凯1, 高敬语2, 朱万华2, 陈凯1()
1.中国地质大学(北京) 地球物理与信息技术学院,北京 100083
2.中国科学院 空天信息创新研究院,北京 100094
Development of a submarine optically pumped magnetometer
GONG Yi-Xuan1(), JIANG Kai1, GAO Jing-Yu2, ZHU Wan-Hua2, CHEN Kai1()
1. School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, China
2. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
全文: PDF(4010 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

自主水下航行器(autonomous underwater vehicle,AUV)搭载磁力仪开展水下目标磁异常探测,可进行长时间、大范围连续采样,具有隐蔽、高效、实用性高、应用范围广泛、机动性强、续航能力强的优势。为提升其测量精度,需要用海底同步观测的磁场数据作为参考,以抵消磁场环境噪声。为此,开发海底光泵磁力仪,为AUV磁异常探测数据处理提供参考。海底光泵磁力仪由磁场测量单元和水声释放单元组成,具备海底磁总场高精度自容采集、海底水声释放回收能力。磁场测量单元由光泵探头、电子学单元、计数器、电池包、尼龙承压舱等组成;水声释放单元由水声换能器、水声通讯板、电腐蚀脱钩器、水泥块、浮力块、框架等组成。重点解决了小型化、自容采集、水声通讯等技术难题。2022年于青岛近海海域开展磁异常探测试验,测试结果验证了海底光泵磁力仪的海底磁场自容采集、释放回收功能,为水下目标探测提供了有效参考数据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
巩奕轩
姜凯
高敬语
朱万华
陈凯
关键词 水下目标磁异常探测光泵磁力仪海底磁场观测水声释放    
Abstract

The Autonomous Underwater Vehicle (AUV) equipped with a magnetometer conducts underwater magnetic anomaly detection, enabling long-duration and large-scale continuous sampling. It offers advantages such as concealment, high efficiency, high practicality, wide application range, strong maneuverability, and robust endurance. To improve measurement accuracy, synchronous seabed magnetic field data is needed as a reference to counteract environmental magnetic noise. To address this, a submarine optically pumped magnetometer was developed to provide a reference for processing AUV magnetic anomaly detection data.The submarine optically pumped magnetometer consists of a magnetic field measurement unit and an acoustic release unit, capable of high-precision autonomous acquisition of the total magnetic field on the seabed, as well as underwater acoustic release and recovery. The magnetic field measurement unit includes an optical pumping probe, electronic unit, counter, battery pack, and nylon pressure chamber. The acoustic release unit includes an acoustic transducer, acoustic communication board, electro-corrosion decoupler, cement block, buoyancy block, and frame. This design addresses key technical challenges such as miniaturization, autonomous acquisition, and underwater acoustic communication.In 2022, a magnetic anomaly detection test was conducted in the offshore waters of Qingdao. The test results verified the autonomous seabed magnetic field acquisition and the release and recovery functions of the submarine optically pumped magnetometer, providing effective reference data for underwater target detection.

Key wordsmagnetic anomaly detection of underwater targets    optically pumped magnetometer    seafloor magnetic field observation    hydroacoustic release
收稿日期: 2024-04-01      修回日期: 2024-10-14      出版日期: 2024-12-20
ZTFLH:  P631  
基金资助:国家高技术研究发展计划项目(2022YFC2807900);国家高技术研究发展计划项目(2016YFC0303100);国家自然科学基金项目(42174081)
通讯作者: 陈凯(1984-),男,副教授,博士生导师,主要从事海洋电磁仪器开发及应用工作。Email:ck@cugb.edu.cn
引用本文:   
巩奕轩, 姜凯, 高敬语, 朱万华, 陈凯. 海底光泵磁力仪研制[J]. 物探与化探, 2024, 48(6): 1498-1506.
GONG Yi-Xuan, JIANG Kai, GAO Jing-Yu, ZHU Wan-Hua, CHEN Kai. Development of a submarine optically pumped magnetometer. Geophysical and Geochemical Exploration, 2024, 48(6): 1498-1506.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.0144      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1498
Fig.1  海底光泵磁力仪硬件原理
Fig.2  海底光泵磁力仪电子舱内结构示意
Fig.3  海底光泵磁力仪海上投放
Fig.4  计数电路框
Fig.5  系统时钟源校准原理
Fig.6  FPGA程序设计框
Fig.7  水声释放工作示意
Fig.8  光泵磁力仪测试现场
Fig.9  不同光泵磁力仪本底噪声水平对比测试结果
Fig.10  海底光泵磁力仪陆地测试结果
Fig.11  海底地磁总场部分时段时间序列
Fig.12  海底地磁环境背景场功率谱密度
[1] 黄海宁, 李宇. 水声目标探测技术研究现状与展望[J]. 中国科学院院刊, 2019, 34(3):264-271.
[1] Huang H N, Li Y. Underwater acoustic detection:Current status and future trends[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3):264-271.
[2] 陈允锋, 刘伟. 非声探潜新技术浅析[J]. 光纤与电缆及其应用技术, 2016(6):29-32,36.
[2] Chen Y F, Liu W. Brief analysis of new non-acoustic submarine detecting technologies[J]. Optical Fiber & Electric Cable and Their Applications, 2016(6):29-32,36.
[3] Fagnard J F, Vanderheyden B, Pardo E, et al. Magnetic shielding of various geometries of bulk semi-closed superconducting cylinders subjected to axial and transverse fields[J]. Superconductor Science and Technology, 2019, 32(7):074007.
[4] 王芙蓉. 水下金属目标探测方法研究[D]. 太原: 中北大学, 2024.
[4] Wang F R. Research on(detection method of) underwater metal target[D]. Taiyuan: North University of China, 2024.
[5] Sharp K M, White R H. More tools in the toolbox:The naval oceanographic office's Remote Environmental Monitoring UnitS (REMUS) 6000 AUV[C]// Oceans,IEEE, 2008.
[6] Adams A A, Charles P T, Veitch S P, et al. REMUS100 AUV with an integrated microfluidic system for explosives detection[J]. Analytical and Bioanalytical Chemistry, 2013, 405(15):5171-5178.
doi: 10.1007/s00216-013-6853-x pmid: 23539095
[7] Bondaryk J E. Bluefin autonomous underwater vehicles:Programs,systems,and acoustic issues[J]. The Journal of the Acoustical Society of America, 2004, 115(5s):2615.
[8] Marthiniussen R, Vestgard K, Klepaker R A, et al. HUGIN-AUV concept and operational experiences to date[C]//[C]// Oceans'04 MTTS/IEEE Techno-Ocean'04, 2004.
[9] McPhail S, Furlong M, Huvenne V, et al. Autosub6000:Its first deepwater trials and science mission[J]. Underwater Technology, 2009, 28(3):91-98.
[10] Ura T, Obara T, Nagahashi K, et al. Introduction to an AUV"r2D4" and its kuroshima knoll survey mission[C]// Oceans'04 MTS/IEEE Techno-Ocean'04, 2004.
[11] Fisher A W, Nidzieko N J, Scully M E, et al. Turbulent mixing in a far-field plume during the transition to upwelling conditions:Microstructure observations from an AUV[J]. Geophysical Research Letters, 2018, 45(18):9765-9773.
[12] 周晶, 司玉林, 林渊, 等. 海底AUV关键技术综述[J]. 海洋学报, 2023, 45(10):1-12.
[12] Zhou J, Si Y L, Lin Y, et al. A review of subsea AUV technology[J]. Haiyang Xuebao, 2023, 45(10):1-12.
[13] 李浩. 航空激光氦光泵磁传感器光机系统设计及抗振动性能研究[D]. 长春: 中国科学院大学, 2022.
[13] Li H. Research on opto-mechanical system design and anti-vibration performance of aviation laser pumped 4He magnetic sensor[D]. Changchun: University of Chinese Academy of Sciences, 2022.
[14] 陈大勇, 史彦超, 崔敬忠, 等. 矢量原子磁力仪中旋转磁场产生装置的研制[J]. 光学精密工程, 2022, 30(7):780-792.
[14] Chen D Y, Shi Y C, Cui J Z, et al. Development of rotating magnetic field device for vector atomic magnetometers[J]. Optics and Precision Engineering, 2022, 30(7):780-792.
[15] 吴德伟, 苗强, 何思璇, 等. 量子传感的导航应用研究现状与展望[J]. 空军工程大学学报:自然科学版, 2021, 22(6):67-76.
[15] Wu D W, Miao Q, He S X, et al. A study of existing status and prospects for quantum sensor in navigation[J]. Journal of Air Force Engineering University:Natural Science Edition, 2021, 22(6):67-76.
[16] GSM-19-Overhauser.pdf [2024-05-29]. https://www.gemsys.ca/pdf/GSM-19-Overhauser.pdf.
[17] CS-3-Brochure-762711_3.pdf[Z/OL]. [2024-05-31]. https://6c3ae8.a2cdn1.secureserver.net/wp-content/uploads/2017/03/CS-3-Brochure-762711_3.pdf.
[18] 裴彦良, 梁瑞才, 刘晨光, 等. 海洋磁力仪的原理与技术指标对比分析[J]. 海洋科学, 2005, 29(12):4-8.
[18] Pei Y L, Liang R C, Liu C G, et al. Principle of marine magnetometer and specification comparative analysis[J]. Marine Sciences, 2005, 29(12):4-8.
[19] 张振宇, 程德福, 王君. 氦光泵磁测技术研究[D]. 长春: 吉林大学, 2012.
[19] Zhang Z Y, Cheng D F, Wang J. Research on optically pumped helium magnetic measurement technology[D]. Changchun: Jilin University, 2012.
[20] 李庆萌, 张军海, 曾宪金, 等. 地磁场对铯原子磁力仪共振谱线的影响[J]. 哈尔滨工程大学学报, 2013, 34(12):1617-1620.
[20] Li Q M, Zhang J H, Zeng X J, et al. Effect of the geomagnetic field on the resonance spectral lines of the Cs magnetometer[J]. Journal of Harbin Engineering University, 2013, 34(12):1617-1620.
[21] 周志坚, 程德福, 王君, 等. 氦光泵磁力仪中磁敏传感器的研制[J]. 传感技术学报, 2009, 22(9):1284-1288.
[21] Zhou Z J, Cheng D F, Wang J, et al. Development of magneto-dependent sensor in the optical pumped magnetometer[J]. Chinese Journal of Sensors and Actuators, 2009, 22(9):1284-1288.
[22] Alexandrov E B. Recent progress in optically pumped magnetometers[J]. Physica Scripta, 2003, T105(1):27-30.
[23] 王维东, 李国祝, 梁尚清, 等. 基于原子磁力仪的高精度电流传感器[J]. 仪表技术与传感器, 2021(1):1-3,8.
[23] Wang W D, Li G Z, Liang S Q, et al. High accuracy current sensor based on atomic magnetometer[J]. Instrument Technique and Sensor, 2021(1):1-3,8.
[24] 彭湛, 邓明, 赵建刚. 电磁触发式声学释放器水下机的软硬件研发[D]. 北京: 中国地质大学(北京), 2020.
[24] Peng Z, Deng M, Zhao J G. The Hardware and software realization of electromagnetic triggered acoustic releaser's underwater unit[D]. Beijing: China University of Geosciences Beijing, 2020.
[25] 罗贤虎, 邓明, 邱宁, 等. MicrOBEM:小型海底电磁接收机[J]. 物探与化探, 2022, 46(3):544-549.
[25] Luo X H, Deng M, Qiu N, et al. MicrOBEM:A micro-ocean-bottom electromagnetic receiver[J]. Geophysical and Geochemical Exploration, 2022, 46(3):544-549.
[1] 邓肖丹, 李学砚, 周锡华, 段乐颖, 何辉. 基于DDS的氦光泵磁力仪射频场智能调频研究[J]. 物探与化探, 2023, 47(2): 464-469.
[2] 张昌达. 量子磁力仪研究和开发近况[J]. 物探与化探, 2005, 29(4): 283-287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com