Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1720-1729    DOI: 10.11720/wtyht.2024.0121
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
基于三维电阻率反演的滑坡地质灾害调查——以无锡市雪浪山景区滑坡为例
姜国庆(), 郝社锋, 喻永祥, 杜建国, 李明, 尚通晓, 宋京雷
江苏省地质调查研究院,江苏 南京 210018
Landslide survey based on three-dimensional resistivity inversion: A case study of the Xuelang Mountain scenic spot, Wuxi, China
JIANG Guo-Qing(), HAO She-Feng, YU Yong-Xiang, Du Jian-Guo, LI Ming, SHANG Tong-Xiao, SONG Jing-Lei
Geological Survey of Jiangsu Province,Nanjing 210018,China
全文: PDF(5261 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

有效地查明滑坡区地层结构及滑坡构造对防灾减灾具有重要意义。本文以无锡市雪浪山景区滑坡调查为例,对比分析了高密度电阻率法二维及三维反演的差异,探讨了三维反演带状效应的消除方法,开展了高精度地表高程数据及钻孔先验信息约束下的三维电阻率反演,构建了滑坡区三维地质模型。研究结果表明,三维电阻率反演在复杂滑坡调查中具有显著优势;通过优化网格间距、阻尼系数和反演滤波器参数可以有效抑制带状效应;精细化地形及先验信息约束可以显著降低地形影响和反演多解性,提高反演对地层界面和滑坡构造的分辨率。通过三维电阻率反演及地质建模,获得了滑坡区的三维地层结构和滑坡体、滑动面空间分布,并对滑坡机理进行了分析研究。该项成果为研究区滑坡地质灾害调查与治理提供了重要基础资料。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜国庆
郝社锋
喻永祥
杜建国
李明
尚通晓
宋京雷
关键词 滑坡地质灾害高密度电阻率法三维反演地质建模    
Abstract

Effectively identifying the stratigraphic and landslide structures in landslide-prone areas is significant for disaster prevention and mitigation. By investigating the landslides in the Xuelang Mountain scenic spot in Wuxi, this study analyzed the differences between two-and three-dimensional inversion using the high-density resistivity method. Accordingly, this study explored methods for eliminating the banded effect in the three-dimensional inversion, performed three-dimensional resistivity inversion under the constraints of high-precision surface elevation data and borehole-derived prior information, and constructed a three-dimensional geological model for the study area. The results indicate that three-dimensional resistivity inversion enjoys distinct advantages in complex landslide surveys. The banded effect can be effectively suppressed by optimizing the grid spacing, damping coefficient, and filter parameters for inversion. Furthermore, the terrain-induced impacts and the multiplicity of solutions of the inversion can be significantly reduced using constraints of refined terrain data and prior information, thus improving the resolutions of stratigraphic boundaries and landslide structures. Through three-dimensional resistivity inversion and geological modeling, this study determined the three-dimensional stratigraphic structure, along with the spatial distributions of the landslide bodies and sliding surfaces, and investigated landslide mechanisms, providing important data for the survey and control of landslides in the study area.

Key wordslandslide    high-density resistivity method    three-dimensional inversion    geological modeling
收稿日期: 2024-03-26      修回日期: 2024-10-09      出版日期: 2024-12-20
ZTFLH:  P631  
基金资助:江苏省科技计划专项资金项目“降雨型下蜀土滑坡野外足尺模型试验及监测预警技术研究与应用”(BE2023796);江苏省级地质勘查项目“江苏省突发地质灾害监测预警体系建设研究与应用”(苏财资环〔2021〕46号)
引用本文:   
姜国庆, 郝社锋, 喻永祥, 杜建国, 李明, 尚通晓, 宋京雷. 基于三维电阻率反演的滑坡地质灾害调查——以无锡市雪浪山景区滑坡为例[J]. 物探与化探, 2024, 48(6): 1720-1729.
JIANG Guo-Qing, HAO She-Feng, YU Yong-Xiang, Du Jian-Guo, LI Ming, SHANG Tong-Xiao, SONG Jing-Lei. Landslide survey based on three-dimensional resistivity inversion: A case study of the Xuelang Mountain scenic spot, Wuxi, China. Geophysical and Geochemical Exploration, 2024, 48(6): 1720-1729.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.0121      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1720
Fig.1  研究区滑坡形态及工作部署示意
地层 岩性 电阻率ρ/ (Ω·m)
第四系(Q) 黏土、泥质粉细砂 10~20
粉细砂、细砂 20~30
中、粗砂 30~50
砂砾石 50~60
泥盆系上统五通组
(D3w)
石英砂岩夹
粉砂质泥岩
800~3600
Table 1  研究区物性参数统计结果
Fig.2  降低带状效应电阻率图像对比
Fig.3  二维和三维电阻率反演结果对比
Fig.4  E3线三维反演电阻率及推断解释断面
Fig.5  重点区三维反演电阻率及推断解释立体图
Fig.6  重点区三维地层结构模型
Fig.7  重点区三维滑坡形态及构造模型
[1] 殷坤龙, 朱良峰. 滑坡灾害空间区划及GIS应用研究[J]. 地学前缘, 2001, 8(2):279-284.
[1] Yin K L, Zhu L F. Landslide hazard zonation and application of GIS[J]. Earth Science Frontiers, 2001, 8(2):279-284.
[2] 殷跃平. 汶川八级地震滑坡特征分析[J]. 工程地质学报, 2009, 17(1):29-38.
[2] Yin Y P. Features of landslides triggered by the Wenchuan Earthquake[J]. Journal of Engineering Geology, 2009, 17(1):29-38.
[3] 廖明生, 董杰, 李梦华, 等. 雷达遥感滑坡隐患识别与形变监测[J]. 遥感学报, 2021, 25(1):332-341.
[3] Liao M S, Dong J, Li M H, et al. Radar remote sensing for potential landslides detection and deformation monitoring[J]. National Remote Sensing Bulletin, 2021, 25(1):332-341.
[4] 薛翊国, 李术才, 苏茂鑫, 等. 厚层堆积层滑坡滑面的综合探测技术及其应用[J]. 中国地质灾害与防治学报, 2013, 24(3):43-53.
[4] Xue Y G, Li S C, Su M X, et al. Comprehensive detection technologies and their implementation on slip plane in thick colluvium landslide[J]. The Chinese Journal of Geological Hazard and Control, 2013, 24(3):43-53.
[5] 李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J]. 武汉大学学报:信息科学版, 2019, 44(7):967-979.
[5] Li Z H, Song C, Yu C, et al. Application of satellite radar remote sensing to landslide detection and monitoring:challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):967-979.
[6] 周越, 曾昭发, 唐海燕, 等. 公路勘察中滑坡体的地球物理特征与分析:以张榆线公路勘察为例[J]. 吉林大学学报:地球科学版, 2021, 51(2):638-644.
[6] Zhou Y, Zeng Z F, Tang H Y, et al. Geophysical characteristics of landslide body in highway reconnaissance:A case study in highway prospecting of Zhangyu Line[J]. Journal of Jilin University:Earth Science Edition, 2021, 51(2):638-644.
[7] 孙红林, 化希瑞, 赵晋乾. 巨型深层岩质滑坡综合物探勘察模式探讨[J]. 铁道工程学报, 2022, 39(8):6-11.
[7] Sun H L, Hua X R, Zhao J Q. Discussion on comprehensive geophysical exploration model of giant deep rock landslides[J]. Journal of Railway Engineering Society, 2022, 39(8):6-11.
[8] 李华, 王东辉. 不同物理和几何参数条件下滑坡要素的地质雷达探测响应研究[J]. 工程地质学报, 2017, 25(4):1057-1064.
[8] Li H, Wang D H. GPR responses on different physical and geometrical parameters of landslide factors[J]. Journal of Engineering Geology, 2017, 25(4):1057-1064.
[9] 李富, 周洪福, 葛华. 不同类型滑坡体的高密度电阻率法勘察电性特征[J]. 物探与化探, 2019, 43(1):215-221.
[9] Li F, Zhou H F, Ge H. Electrical characteristics of different types of landslide bodies investigated by high-density electrical method[J]. Geophysical and Geochemical Exploration, 2019, 43(1):215-221.
[10] Cebulski J, Pasierb B, Wieczorek D, et al. Reconstruction of landslide movements using digital elevation model and electrical resistivity tomography analysis in the Polish Outer Carpathians[J]. Catena, 2020, 195:1-14.
[11] 王磊, 李孝波, 苏占东, 等. 高密度电法在黄土—泥岩接触面滑坡勘察中的应用[J]. 地质力学学报, 2019, 25(4):536-543.
[11] Wang L, Li X B, Su Z D, et al. Application of high-density electrical method in loess-mudstone interface landslide investigation[J]. Journal of Geomechanics, 2019, 25(4):536-543.
[12] 林松, 王薇, 邓小虎, 等. 三峡库区典型滑坡地质与地球物理电性特征[J]. 吉林大学学报:地球科学版, 2020, 50(1):273-284.
[12] Lin S, Wang W, Deng X H, et al. Geological and geophysical electric characteristics of typical landslides in Three Gorges Reservoir[J]. Journal of Jilin University:Earth Science Edition, 2020, 50(1):273-284.
[13] Bellanova J, Calamita G, Giocoli A, et al. Electrical resistivity imaging for the characterization of the Montaguto landslide (southern Italy)[J]. Engineering Geology, 2018, 243:272-281.
[14] 刘栋, 张帆宇, 陈立, 等. 高密度电法在黄土滑坡结构探测与三维建模中的应用[J]. 地球物理学进展, 2022, 37(4):1742-1748.
[14] Liu D, Zhang F Y, Chen L, et al. Application of high-density electrical method in detecting and 3D modeling of loess landslide[J]. Progress in Geophysics, 2022, 37(4):1742-1748.
[15] 黄俊革, 王家林, 阮百尧. 三维高密度电阻率E-SCAN法有限元模拟异常特征研究[J]. 地球物理学报, 2006, 49(4):1206-1214.
[15] Huang J G, Wang J L, Ruan B Y. A study on FEM modeling of anomalies of 3-D high-density E-SCAN resistivity survey[J]. Chinese Jouranl of Geophysics, 2006, 49(4):1206-1214.
[16] 戴前伟, 肖波, 冯德山, 等. 基于二维高密度电阻率勘探数据的三维反演及应用[J]. 中南大学学报:自然科学版, 2012, 43(1):293-300.
[16] Dai Q W, Xiao B, Feng D S, et al. 3D inversion of high density resistivity method based on 2D exploration data and its application[J]. Journal of Central South University:Science and Technology, 2012, 43(1):293-300.
[17] Loke M H, Dahlin T. Methods to reduce banding effects in 3D resistivity inversion[C]// Near Surface 2010 16th European Meeting of Environmental and Engineering Geophysics, 2010.
[18] Chambers J E, Kuras O, Meldrum P I, et al. Electrical resistivity tomography applied to geologic,hydrogeologic,and engineering investigations at a former waste-disposal site[J]. Geophysics, 2006, 71(6):B231-B239.
[19] Loke M H, Dahlin T, Rucker D F. Smoothness-constrained time-lapse inversion of data from 3D resistivity surveys[J]. Near Surface Geophysics, 2014, 12(1):5-24.
[20] 黄瑶. 基于三维电阻率法的水电工程隧道地质条件探查[J]. 物探与化探, 2024, 48(1):281-286.
[20] Huang Y. Exploring geological conditions for tunnel construction in hydropower engineering using a 3D resistivity method[J]. Geophysical and Geochemical Exploration, 2024, 48(1):281-286.
[21] 吴小平, 刘洋, 王威. 基于非结构网格的电阻率三维带地形反演[J]. 地球物理学报, 2015, 58(8):2706-2717.
doi: 10.6038/cjg20150808
[21] Wu X P, Liu Y, Wang W. 3D resistivity inversion incorporating topography based on unstructured meshes[J]. Chinese Jouranl of Geophysics, 2015, 58(8):2706-2717.
[22] Li S C, Nie L C, Liu B, et al. 3D electrical resistivity inversion using prior spatial shape constraints[J]. Applied Geophysics, 2013, 10(4):361-372.
[23] Kamiński M, Zientara P, Krawczyk M. Electrical resistivity tomography and digital aerial photogrammetry in the research of the “Bachledzki Hill” active landslide——in Podhale (Poland)[J]. Engineering Geology, 2021, 285:1-17.
[24] 喻永祥, 何伟, 李勇, 等. 雪浪山横山寺西侧顺层岩质高边坡变形破坏机理与治理方案分析[J]. 中国地质灾害与防治学报, 2020, 31(2):33-43.
[24] Yu Y X, He W, Li Y, et al. Stability evaluation and treatment measure study of high bedding rock slope on the west side of Hengshan Temple in Xuelang Mountain[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(2):33-43.
[25] Bentley L R, Gharibi M. Two-and three-dimensional electrical resistivity imaging at a heterogeneous remediation site[J]. Geophysics, 2004, 69(3):674-680.
[26] Rucker D F, Loke M H, Levitt M T, et al. Electrical-resistivity characterization of an industrial site using long electrodes[J]. Geophysics, 2010, 75(4):WA95-WA104.
[1] 赵柏儒, 李厚朴, 张恒磊. 磁异常三维反演在磁铁矿勘查中的应用[J]. 物探与化探, 2024, 48(6): 1626-1632.
[2] 刘洪华, 张卉, 王汝杰, 于鹏, 秦升强, 李文宇, 车荣祺. 滨海城市地质结构电阻率法三维模拟与应用[J]. 物探与化探, 2024, 48(4): 1037-1044.
[3] 陈永凌, 蒋首进, 谢丹, 王嘉, 何志雄, 刘澄. 阿里地区日土县综合物探方法找水研究[J]. 物探与化探, 2024, 48(3): 668-674.
[4] 赵自豪, 李鹏慧, 吕海建, 康森. 露天矿台阶对高密度电法勘探影响的实验研究[J]. 物探与化探, 2024, 48(2): 565-572.
[5] 宋涛, 包怡, 赵松, 吴建峰, 许元顺, 涂海峰. 井—电联合勘探与三维地质建模在某填埋场环境调查中的应用[J]. 物探与化探, 2024, 48(1): 272-280.
[6] 刘湘浩, 刘四新, 胡铭奇, 孙中秋, 王千. 基于OMAGA-BP算法的高密度电阻率法反演研究[J]. 物探与化探, 2023, 47(6): 1519-1527.
[7] 刘豹, 杨宇山, 刘天佑. 铜绿山矿田成矿远景预测及三维地质模型[J]. 物探与化探, 2023, 47(4): 906-915.
[8] 苏永军, 曹占宁, 赵更新, 胡祥云, 范剑, 张竞, 范翠松, 黄忠峰. 高密度电阻率法在雄安新区浅表古河道精细化探测中的应用研究[J]. 物探与化探, 2023, 47(1): 272-278.
[9] 汪文刚, 李凯. 基于GOCAD软件的多源地质勘探数据接口开发[J]. 物探与化探, 2022, 46(6): 1534-1539.
[10] 孙建宏, 程立群, 赵伟锋, 任改娟, 孙冠石, 王瑞鹏, 裴明星. 海水入侵区视电阻率与氯离子浓度关系研究——以秦皇岛地区为例[J]. 物探与化探, 2022, 46(2): 518-524.
[11] 何胜, 马文鑫, 甘斌. 地面核磁共振法与高密度电阻率法在西藏盐湖卤水钾矿勘查中的应用[J]. 物探与化探, 2021, 45(6): 1409-1415.
[12] 罗辉, 蒋实, 赵宏刚, 李亚伟, 田霄. 三维地质建模在高放废物地质处置预选地段筛选中的应用——以新疆预选区天湖预选地段为例[J]. 物探与化探, 2021, 45(6): 1488-1496.
[13] 蒋实, 罗辉, 陈伟明, 李亚伟, 金远新. 高放废物地质处置算井子地段地质条件适宜性研究[J]. 物探与化探, 2021, 45(5): 1208-1216.
[14] 郭培虹, 冯治汉, 王万银, 唐小平, 刘生荣. 北秦岭华阳川地区重磁三维反演及岩浆岩特征研究[J]. 物探与化探, 2021, 45(5): 1217-1225.
[15] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com