Impacts of drone noise on semi-airborne transient electromagnetic data
WANG Zhi-Hong1(), ZHANG Nuo-Ya2,3, HU Shan-Shan2,3, ZHENG Zi-Qiang2,3, LIU Yu-Chao2,3, ZHOU Zheng2,3, SUN Huai-Feng2,3()
1. Airborne Survey and Remote Sensing Center of Nuclear Industry, Shijiazhuang 050002, China 2. Institute of Geotechnical and Underground Engineering, Shandong University, Jinan 250061, China 3. Laboratory of Earth Electromagnetic Exploration, Shandong University, Jinan 250061, China
As a semi-airbone transient electromagnetic (TEM) platform, drones inherently generate electromagnetic signals that may interfere with the collected transient electromagnetic data. This study investigated the impacts of drone noise on the collected data. Through outdoor experiments and systematic performance testing, this study analyzed the impacts of drone noise under varying rotor speeds, suspension lengths, flight height, and flight speeds. Accordingly, this study proposed methods for suppressing drone noise, such as determining the optimal suspension length and incorporating shielding layers. The study was conducted using the KWT-X8L-25 octocopter drones, but the research methodology and philosophy are also applicable to other drone models, thus serving as a reference for the selection of semi-airborne TEM platforms.
Lin J, Xue G Q, Li X. Technological innovation of semi-airborne electromagnetic detection method[J]. Chinese Journal of Geophysics, 2021, 64(9):2995-3004.
Zhang Y Y, Li X. Research progress on ground-airborne transient electromagnetic method[J]. Progress in Geophysics, 2017, 32(4):1735-1741.
[3]
Nabighian M N. Electromagnetic methods in applied geophysics[M]. Tulsa,USA: SEG Books, 1988:217-231.
[4]
Elliott P. New airborne electromagnetic method provides fast deep-target data turnaround[J]. The Leading Edge, 1996, 15(4):309-310.
[5]
Smith R S, Annan A P, McGowan P D. A comparison of data from airborne,semi-airborne,and ground electromagnetic systems[J]. Geophysics, 2001, 66(5):1379-1385.
[6]
Mogi T, Tanaka Y, Kusunoki K, et al. Development of grounded electrical source airborne transient EM (GREATEM)[J]. Exploration Geophysics, 1998, 29(1/2):61-64.
[7]
Mogi T, Kusunoki K, Kaieda H, et al. Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai,north-eastern Japan[J]. Exploration Geophysics, 2009, 40(1):1-7.
[8]
张良. 半航空瞬变电磁接收机研制[D]. 成都: 成都理工大学, 2017.
[8]
Zhang L. Development of semi-aeronautical transient electromagnetic receiver[D]. Chengdu: Chengdu University of Technology, 2017.
[9]
Wu X, Xue G Q, Fang G Y, et al. The development and applications of the semi-airborne electromagnetic system in China[J]. IEEE Access, 2019, 7:104956-104966.
Ji Y J, Wang Y, Xu J, et al. Development and application of the grounded long wire source airborne electromagnetic exploration system based on an unmanned airship[J]. Chinese Journal of Geophysics, 2013, 56(11):3640-3650.
Fu L, Lin J, Wang Y Z, et al. Research on characteristic and noise of magnetic flux negative feedback air coil sensor[J]. Chinese Journal of Scientific Instrument, 2013, 34(6):113-119.
Zhang Y M, Yuan G Y, Li D S, et al. The development of transient electromagnetic standard signal source based on ARM[J]. Research and Exploration in Laboratory, 2015, 34(9):62-65,69.
[13]
李琳琳. 半航空瞬变电磁发射机关键技术研究[D]. 成都: 成都理工大学, 2015.
[13]
Li L L. Research on key technologies of semi-aeronautical transient electromagnetic transmitter[D]. Chengdu: Chengdu University of Technology, 2015.
[14]
苏发. 半航空时间域瞬变电磁接收系统设计[D]. 长春: 吉林大学, 2016.
[14]
Su F. Design of semi-aeronautical time domain transient electromagnetic receiving system[D]. Changchun: Jilin University, 2016.
[15]
Liu F B, Li J T, Liu L H, et al. Development and application of a new semi-airborne transient electromagnetic system with UAV platform[J]. Progress in Geophysics, 2017, 32(5):2222-2229.
Li S Y, Lin J, Yang G H, et al. Ground-Airborne electromagnetic signals de-noising using a combined wavelet transform algorithm[J]. Chinese Journal of Geophysics, 2013, 56(9):3145-3152.
[17]
Wang Y, Ji Y J, Li S Y, et al. A wavelet-based baseline drift correction method for grounded electrical source airborne transient electromagnetic signals[J]. Exploration Geophysics, 2013, 44(4):229-237.
Chen B, Lu C D, Liu G D. A denoising method based on kernel principal component analysis for airborne time-domain electromagnetic data[J]. Chinese Journal of Geophysics, 2014, 57(1):103-111.
[19]
Li D S, Wang Y, Lin J, et al. Electromagnetic noise reduction in grounded electrical-source airborne transient electromagnetic signal using a stationarywavelet-based denoising algorithm[J]. Near Surface Geophysics, 2017, 15(2):163-173.
[20]
Ji Y J, Wu Q, Wang Y, et al. Noise reduction of grounded electrical source airborne transient electromagnetic data using an exponential fitting-adaptive Kalman filter[J]. Exploration Geophysics, 2018, 49(3):243-252.
[21]
Ji Y J, Li D S, Yu M M, et al. A de-noising algorithm based on wavelet threshold-exponential adaptive window width-fitting for ground electrical source airborne transient electromagnetic signal[J]. Journal of Applied Geophysics, 2016, 128:1-7.
[22]
Shi Z Y, Liu L H, Xiao P, et al. Applying transmission line theory to study the transmitting turn-off current in a long grounded wire[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(10):5112-5122.
[23]
陈成栋. 半航空瞬变电磁数据采集设计和数据校正研究[D]. 济南: 山东大学, 2021.
[23]
Chen C D. Research on data acquisition design and data correction of semi-airborne transient electromagnetic data[D]. Jinan: Shandong University, 2021.
[24]
Sun H F, Zhang N Y, Li D R, et al. The first semi-airborne transient electromagnetic survey for tunnel investigation in very complex terrain areas[J]. Tunnelling and Underground Space Technology, 2023, 132:104893.
[25]
Liu R, Sun H F, Liu D, et al. A joint application of semi-airborne and in-tunnel geophysical survey in complex limestone geology[J]. Bulletin of Engineering Geology and the Environment, 2023, 82(6):226.