Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1479-1485    DOI: 10.11720/wtyht.2024.0169
  “地球物理仪器新技术”专栏(特约专栏主编:邓明) 本期目录 | 过刊浏览 | 高级检索 |
便携式等值反磁通瞬变电磁系统及试验应用
周胜1,2,3(), 陈兴朋2(), 王俊4, 亓庆新2, 张志清4, 潘纪敏2, 席振铢3, 羊春华1
1.湖南省地球物理地球化学调查所,湖南 长沙 410014
2.湖南五维地质科技有限公司,湖南 长沙 410205
3.中南大学 地球科学与信息物理学院,湖南 长沙 410083
4.中国电建集团昆明勘测设计研究院有限公司,云南 昆明 650031
Portable opposing-coils transient electromagnetic system and its application tests
ZHOU Sheng1,2,3(), CHEN Xing-Peng2(), WANG Jun4, QI Qing-Xin2, ZHANG Zhi-Qing4, PAN Ji-Min2, XI Zhen-Zhu3, YANG Chun-Hua1
1. Geophysical and Geochemical Survey Institute of Hunan Province, Changsha 410014, China
2. Hunan 5D Geosciences Co., Ltd., Changsha 410205, China
3. School of Geosciences and Info-physics, Central South University, Changsha 410083, China
4. POWERCHINA Kunming Engineering Corporation Limited, Kunming 650031, China
全文: PDF(4415 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为改善浅层工程勘查中小回线瞬变电磁系统存在的设备质量过大、收发互感严重及人力需求高等问题,本研究基于等值反磁通瞬变电磁原理,计算了广义等值反磁通天线装置的磁场分布,设计制作了高效、便携天线并配套了相应系统。后续野外试验表明,该便携式等值反磁通瞬变电磁系统在确保勘探精度的同时,有效削弱了收发天线互感现象,显著减轻了人力需求,提高了勘查效率,初步验证了系统的可行性,为小型化浅层勘查设备的发展提供了新的技术路线。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周胜
陈兴朋
王俊
亓庆新
张志清
潘纪敏
席振铢
羊春华
关键词 瞬变电磁等值反磁通瞬变电磁装置便携式天线    
Abstract

In shallow engineering investigations, the small-loop transient electromagnetic (TEM) system is challenged by limitations such as overweight equipment, significant transmitter-receiver mutual inductance, and high manpower requirements. Hence, this study introduced an improved system. Based on the opposing-coils transient electromagnetic (OCTEM) theory, this study calculated the magnetic field distribution of the generalized opposing-coils antenna device. Furthermore, it designed and developed efficient portable antennas and the supporting system (collectively referred to as the portable OCTEM system). Subsequent field experiments demonstrate that while ensuring exploration accuracy, the portable OCTEM system can enhance the investigation efficiency by effectively mitigating the transmitter-receiver mutual inductance and significantly reducing manpower requirements. This study preliminarily verifies the feasibility of the portable OCTEM system, providing a novel technology route for developing downsized shallow exploration equipment.

Key wordstransient electromagnetic (TEM) system    opposing-coils transient electromagnetic (OCTEM) device    portable antenna
收稿日期: 2024-04-15      修回日期: 2024-07-12      出版日期: 2024-12-20
ZTFLH:  P631  
基金资助:中国电建基础研究项目(DJ-HXGG-2023-16);湖南省地质院青年骨干项目(HNGSTP202448)
通讯作者: 陈兴朋(1986-),男,2012年硕士毕业于中南大学,从事电磁法仪器的开发与应用研究工作。Email: bantianfeng@foxmail.com
引用本文:   
周胜, 陈兴朋, 王俊, 亓庆新, 张志清, 潘纪敏, 席振铢, 羊春华. 便携式等值反磁通瞬变电磁系统及试验应用[J]. 物探与化探, 2024, 48(6): 1479-1485.
ZHOU Sheng, CHEN Xing-Peng, WANG Jun, QI Qing-Xin, ZHANG Zhi-Qing, PAN Ji-Min, XI Zhen-Zhu, YANG Chun-Hua. Portable opposing-coils transient electromagnetic system and its application tests. Geophysical and Geochemical Exploration, 2024, 48(6): 1479-1485.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.0169      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1479
Fig.1  等值反磁通瞬变电磁装置示意
Fig.2  等值反磁通瞬变电磁HPTEM-18系统
Fig.3  广义等值反磁通瞬变电磁α装置(a)和β装置(b)
Fig.4  圆形载流线圈磁场计算柱坐标系
Fig.5  广义α装置轴线切面磁场Bz=0分布(a)和轴线磁场Bz分量(b)
Fig.6  广义β装置轴线切面磁场Bz=0分布(a)和轴线磁场Bz分量(b)
Fig.7  基于广义β装置的便携瞬变电磁天线
Fig.8  便携式等值反磁通瞬变电磁系统结构
Fig.9  便携式等值反磁通瞬变电磁系统实物
Fig.10  便携式等值反磁通瞬变电磁系统野外试验应用
a—现场试验应用;b—某输电塔基测线布置及异常投影;c—L0线38 m测点观测数据;d—探测断面L0;e—探测断面L6;f—探测断面L12
[1] Blau L W. Methods and apparatus for geophysical exploration[P]. U.S.Patent,1,911,137, 1933.
[2] 牛之琏. 时间域电磁法原理[M]. 长沙: 中南大学出版社, 2007.
[2] Niu Z L. Theory of time domain electromagnetic method[M]. Changsha: Central South University, 2007.
[3] 牛之琏. 瞬变电磁测深译文集[J]. 中南矿冶学院报, 1985(6):1-198.
[3] Niu Z L. Transient electromagnetic bathymetry translations[J]. Journal of Central South Institute of Mining and Metallurgy, 1985(6):1-198.
[4] Kaufman A A, Keller G V. 频率域和时间域电磁测深法[M].王建谋,译. 北京: 地质出版社, 1987.
[4] Kaufman A A, Keller G V. Frequency and transient sounding[M].Wang J M,transl ate. Beijing: Geology Press, 1987.
[5] Cидоров B A. 脉冲感应电法勘探[M].牛之琏译. 长沙: 中南工业大学物探室, 1991.
[5] Cидоров B A. Pulse-induced electric exploration[M].Niu Z L,transl ate. Changsha: Geophysical Prospecting Laboratory, Central South University of Technology, 1991.
[6] Куфманн A A. 近区建场测深理论曲线图册[R].牛之琏,译. 长沙: 中南工业大学物探室, 1992.
[6] А.А.Куфманн. Atlas of theoretical curves of bathymetry in the near area[R].Niu Z L,translate. Changsha: Geophysical Prospecting Laboratory,Central South University of Technology, 1992.
[7] 李貅. 瞬变电磁测深的理论与应用[M]. 西安: 陕西科学技术出版社, 2002.
[7] Li X. Theory and application of transient electromagnetic sounding[M]. Xi'an: Shaanxi Science and Technology Press, 2002.
[8] 薛国强, 李貅, 底青云. 瞬变电磁法理论与应用研究进展[J]. 地球物理学进展, 2007, 22(4):1195-1200.
[8] Xue G Q, Li X, Di Q Y. The progress of TEM in theory and application[J]. Progress in Geophysics, 2007, 22(4):1195-1200.
[9] 白登海, Maxwell M. 瞬变电磁法中两种关断电流对响应函数的影响及其应对策略[J]. 地震地质, 2001, 23(2):245-251.
[9] Bai D H, Maxwell M. The effect of two types of turn-off current on tem responses and the correction techniques[J]. Seismology and Geology, 2001, 23(2):245-251.
[10] 于生宝, 林君. 瞬变电磁法中发射机关断时间的影响研究[J]. 石油仪器, 1999(6):15-17,51.
[10] Yu S B, Lin J. Study of the effect of transmitter turn-off time on transient electromagnetic method[J]. Petroleum Instruments, 1999(6):15-17,51.
[11] 程久龙, 贾吉哲, 陈丁. 矿井瞬变电磁斜阶跃场源激励下的响应计算及关断效应分析[C]// 2015中国地球科学联合学术年会专题55煤炭资源与矿山安全地球物理, 2015.
[11] Cheng J L, Jia J Z, Chen D. Response calculation and shut-off effect analysis under excitation of mine transient electromagnetic inclined step field source[C]// Proceedings of the 2015 China Joint Academic Conference on Earth Sciences—Special Topic 55:Geophysics of Coal Resources and Mine Safety, 2015.
[12] 孙怀凤, 李貅, 李术才, 等. 考虑关断时间的回线源激发TEM三维时域有限差分正演[J]. 地球物理学报, 2013, 56(3):1049-1064.
[12] Sun H F, Li X, Li S C, et al. Three-dimensional FDTD modeling of TEM excited by a loop source considering ramp time[J]. Chinese Journal of Geophysics, 2013, 56(3):1049-1064.
[13] 杨云见, 王绪本, 何展翔. 考虑关断时间效应的瞬变电磁一维反演[J]. 物探与化探, 2005, 29(3):234-236.
[13] Yang Y J, Wang X B, He Z X. 1D inversion of transient electromagnetic data in consideration of ramp time effect[J]. Geophysical and Geochemical Exploration, 2005, 29(3):234-236.
[14] Fitterman D V, Anderson W L. Effect of transmitter turn-off time on transient soundings[J]. Geoexploration, 1987, 24(2):131-146.
[15] 付志红. 电磁探测特种电源技术的研究[D]. 重庆: 重庆大学, 2007.
[15] Fu Z H. Research on the special power supply technology for electromagnetic detection[D]. Chongqing: Chongqing University, 2007.
[16] 付志红, 赵俊丽, 周雒维, 等. WTEM高速关断瞬变电磁探测系统[J]. 仪器仪表学报, 2008, 29(5):933-936.
[16] Fu Z H, Zhao J L, Zhou L W, et al. WTEM fast turn-off transient electromagnetic detection system[J]. Chinese Journal of Scientific Instrument, 2008, 29(5):933-936.
[17] 嵇艳鞠, 林君, 于生宝, 等. ATTEM系统中电流关断期间瞬变电磁场响应求解的研究[J]. 地球物理学报, 2006, 49(6):1884-1890.
[17] Ji Y J, Lin J, Yu S B, et al. A study on solution of transient electromagnetic response during transmitting current turn-off in the ATTEM system[J]. Chinese Journal of Geophysics, 2006, 49(6):1884-1890.
[18] 王华军. 阻尼系数对瞬变电磁观测信号的影响特征[J]. 地球物理学报, 2010, 53(2):428-434.
[18] Wang H J. Characteristics of damping coefficient effect on transient electromagnetic signal[J]. Chinese Journal of Geophysics, 2010, 53(2):428-434.
[19] 席振铢, 龙霞, 周胜, 等. 基于等值反磁通原理的浅层瞬变电磁法[J]. 地球物理学报, 2016, 59(9):3428-3435.
doi: 10.6038/cjg20160925
[19] Xi Z Z, Long X, Zhou S, et al. Opposing coils transient electromagnetic method for shallow subsurface detection[J]. Chinese Journal of Geophysics, 2016, 59(9):3428-3435.
[20] Xi Z Z, Long X, Huang L, et al. Opposing-coils transient electromagnetic method focused near-surface resolution[J]. Geophysics, 2016, 81(5):E279-E285.
[21] 王浩文. 瞬变电磁小回线探测技术研究[D]. 重庆: 重庆大学, 2019.
[21] Wang H W. Research on transient electromagnetic small-loop detection technology[D]. Chongqing: Chongqing University, 2019.
[22] Fu Z H, Wang H W, Wang Y, et al. Elimination of mutual inductance effect for small-loop transient electromagnetic devices[J]. Geophysics, 2019, 84(3):1-47.
[23] Di Q Y, Xue G Q, Yin C C, et al. New methods of controlled-source electro-magnetic detection in China[J]. Science China Earth Sciences, 2020, 63(9):1268-1277.
[24] Nabighian M N. Electromagnetic methods in applied geophysics:Volume 1,Theory[M].Zhao J X translated. Beijing: Geology Press, 1992.
[1] 王志宏, 张诺亚, 胡杉杉, 郑梓强, 刘玉超, 周正, 孙怀凤. 无人机噪声对半航空瞬变电磁数据的影响分析[J]. 物探与化探, 2024, 48(6): 1633-1642.
[2] 薛国强. 短偏移距瞬变电磁法探测技术与应用研究新进展[J]. 物探与化探, 2024, 48(5): 1165-1168.
[3] 贾波, 张富明, 张利军, 刘皓皓, 郭亮亮, 宋伟, 张朝阳, 何海龙, 王刚. 巷道电性源瞬变电磁响应三维数值模拟[J]. 物探与化探, 2024, 48(5): 1185-1192.
[4] 李海, 赵攀, 李柯颖, 刘峥. 电性源瞬变电磁法虚拟波场解析推导[J]. 物探与化探, 2024, 48(5): 1193-1198.
[5] 饶丽婷, 武欣, 郭睿, 党博, 党瑞荣. 基于监督下降法的短偏移距瞬变电磁快速反演研究[J]. 物探与化探, 2024, 48(5): 1199-1207.
[6] 黄仕茂, 杨光, 王军成, 罗传根, 徐明钻, 周楠楠, 赵鹏. SOTEM在厚覆盖煤矿采空区探测中的应用实例[J]. 物探与化探, 2024, 48(5): 1208-1214.
[7] 李贺, 李貅, 戚志鹏, 曹华科. 孔—巷瞬变电磁隧道不良地质体超前预报方法研究[J]. 物探与化探, 2024, 48(5): 1215-1222.
[8] 朱小伟, 丁辰, 薛凯喜, 陈骏, 韩凯敏, 罗强, 易光胜. 等值反磁通瞬变电磁法在地下浅层富水区应用——以新余市下村镇为例[J]. 物探与化探, 2024, 48(5): 1424-1436.
[9] 冯威, 冯浩, 肖立江, 陈品明, 刘东, 王用鑫, 周小生, 孙怀凤, 王震. 基于生成对抗网络的半航空瞬变电磁噪声数据扩充方法[J]. 物探与化探, 2024, 48(3): 812-819.
[10] 李昊锦, 毛玉蓉, 周磊, 谢兴兵, 郭庆明, 刘灿, 柯相彬, 贺煜斐. 井孔瞬变电磁短偏移距远探测能力研究[J]. 物探与化探, 2023, 47(6): 1563-1572.
[11] 游希然, 张继锋, 石宇. 基于人工神经网络的瞬变电磁成像方法[J]. 物探与化探, 2023, 47(5): 1206-1214.
[12] 张帆, 冯国瑞, 戚庭野, 余传涛, 张新军, 王超宇, 杜孙稳, 赵德康. 瞬变电磁法勘探煤矿不同层间距双层积水采空区的可行性研究[J]. 物探与化探, 2023, 47(5): 1215-1225.
[13] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[14] 邢涛, 王垚, 李建慧. 基于B样条插值的瞬变电磁响应一维精确计算[J]. 物探与化探, 2023, 47(5): 1316-1325.
[15] 何胜, 王万平, 董高峰, 南秀加, 魏丰丰, 白勇勇. 等值反磁通瞬变电磁法在城市地质调查中的应用[J]. 物探与化探, 2023, 47(5): 1379-1386.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com