Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1626-1632    DOI: 10.11720/wtyht.2024.0167
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
磁异常三维反演在磁铁矿勘查中的应用
赵柏儒1,2(), 李厚朴3(), 张恒磊1,2
1.中国地质大学(武汉) 地球物理与空间信息学院,湖北 武汉 430074
2.中国地质大学(武汉) 地质探测与评估教育部重点实验室,湖北 武汉 430074
3.海军工程大学 电气工程学院,湖北 武汉 430033
Application of three-dimensional magnetic anomaly inversion in magnetite exploration
ZHAO Bai-Ru1,2(), LI Hou-Pu3(), ZHANG Heng-Lei1,2
1. School of Geophysics and Geomatics, China University of Geosciences (Wuhan), Wuhan 430074, China
2. Key Laboratory of Geological Survey and Evaluation of Ministry of Education, China University of Geosciences (Wuhan), Wuhan 430074, China
3. School of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China
全文: PDF(3579 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

由于青海尕林格铁矿区上覆有超过150 m厚的沉积覆盖层,矿体埋深大,使得磁异常形态平缓,难以刻画矿体的空间分布特征。因此,本文采用磁异常三维反演方法获得研究区地下三维磁化强度分布特征。结合该区围岩无磁性的先验信息,三维磁化强度模型不仅能较清晰地显示矿体的空间分布特征,而且反映了现有500 m以浅的钻孔下方存在强磁性体的分布,推断区内500 m深度以下存在隐伏矿体。研究结果表明,磁异常三维反演可以有效地提升目标体的识别能力,能够较清晰地显示磁性矿体的水平位置、深度及规模等信息,可以为钻探设计、储量评估等提供有力依据,值得在固体矿产勘探详查中推广应用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵柏儒
李厚朴
张恒磊
关键词 磁法勘探三维反演磁铁矿勘查尕林格矿区    
Abstract

The Galinge iron deposit in Qinghai is overlain by deposits measuring greater than 150 m in thickness. The great burial depths of ore bodies lead to gentle magnetic anomaly morphology, making it difficult to characterize the spatial distribution of ore bodies. Therefore, this study employed three-dimensional magnetic anomaly inversion to determine the three-dimensional distribution characteristics of subsurface magnetic intensity in the study area. Given the prior information of non-magnetic surrounding rocks, the three-dimensional magnetic intensity model clearly presented the spatial distribution of the ore bodies and reflected the presence of intense magnetic bodies at depths of less than 500 m in existing boreholes. Accordingly, it can be inferred that there exist concealed ore bodies at depths exceeding 500 m in the study area. The results of this study suggest that three-dimensional magnetic anomaly inversion can effectively improve target identification, providing clear information on the horizontal positions, depths, and scales of magnetic ore bodies. The proposed inversion method can offer strong support for drilling design and reserve estimation, warranting promotion in detailed exploration of solid minerals.

Key wordsmagnetic survey    three-dimensional inversion    magnetite exploration    Galinge deposit
收稿日期: 2024-04-15      修回日期: 2024-10-10      出版日期: 2024-12-20
ZTFLH:  P631  
基金资助:国家优秀青年科学基金项目“海洋大地测量”(42122025);国家重点研发计划项目“磁探测系统及关键技术研究”(2022YFC3104000);地质探测与评估教育部重点实验室主任基金;中央高校基本科研业务费(GLAB2022ZR08)
通讯作者: 李厚朴(1985-),男,博士,教授,主要从事海洋大地测量与海洋地球物理方向研究工作。Email: lihoupu1985@126.com
引用本文:   
赵柏儒, 李厚朴, 张恒磊. 磁异常三维反演在磁铁矿勘查中的应用[J]. 物探与化探, 2024, 48(6): 1626-1632.
ZHAO Bai-Ru, LI Hou-Pu, ZHANG Heng-Lei. Application of three-dimensional magnetic anomaly inversion in magnetite exploration. Geophysical and Geochemical Exploration, 2024, 48(6): 1626-1632.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.0167      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1626
Fig.1  尕林格矿区地质图(改编自Zhang等[24])
岩矿名称 标本数 几何平均值
κ/(4π·10-6SI) Jr/(10-3A·m-1)
致密块状磁铁矿 149 5.01×105 6.40×104
稀疏浸染状磁铁矿 171 4.23×104 2.86×104
磁铁矿化黄铁矿 19 5.90×104 2.56×104
含磁铁矿磁黄铁矿 27 1.02×104 2.34×103
磁铁矿化矽卡岩 56 1.23×104 6.41×103
磁铁矿化硅质角岩 9 9.2×104 7.36×103
磁铁矿化辉石岩 25 8.27×104 9.97×103
矿化大理岩 12 1.33×103 4.88×102
矽卡岩化大理岩 47 1.49×103 4.91×102
细晶闪长岩 3 1.07×103 8.15×102
泥质硅质岩 16 3.77×102 1.98×102
Table 1  研究区岩矿石标本磁性参数
Fig.2  9线钻孔剖面
(剖面位置如图3所示据汪钟莲等[3]修编)
Fig.3  研究区ΔT磁异常
Fig.4  化极异常与归一化磁源强度的垂向导数的相关系数
Fig.5  反演迭代均方误差曲线
Fig.6  三维反演拟合磁异常(a)与剩余磁异常(b)
Fig.7  三维磁化强度200 m深度水平切片
Fig.8  三维磁化强度深度切片
(图中箭头线表示钻孔及钻孔编号,黑色块体表示钻遇的矿体)
[1] 吴小霞, 保广英, 伊有昌, 等. 青海省尕林格富铁矿床地质特征及成因探讨[J]. 黄金科学技术, 2007, 15(4):36-40.
[1] Wu X X, Bao G Y, Yi Y C, et al. The study on the genesis and geological characteristics of Galinge high-grade iron deposit of Qinghai Province[J]. Gold Science and Technology, 2007, 15(4):36-40.
[2] 何书跃, 祁兰英, 舒树兰, 等. 青海祁漫塔格地区斑岩铜矿的成矿条件和远景[J]. 地质与勘探, 2008, 44(2):14-22.
[2] He S Y, Qi L Y, Shu S L, et al. Metallogenic environment and potential in the Qimantage porphyry copper deposit,Qinghai[J]. Geology and Prospecting, 2008, 44(2):14-22.
[3] 汪钟莲, 王永国, 王智茂, 等. 地面磁测资料反演与井中磁测联合找矿——以尕林格铁多金属矿床Ⅱ矿段为例[J]. 地质与资源, 2020, 29(1):61-67.
[3] Wang Z L, Wang Y G, Wang Z M, et al. Joint prospecting of ground magnetic survey data inversion and borehole magnetic survey:A case study of Galinge Fe-polymetallic deposit[J]. Geology and Resources, 2020, 29(1):61-67.
[4] 袁洋, 崔益安, 陈波, 等. 基于BTTB矩阵的快速高精度三维磁场正演[J]. 地球物理学报, 2022, 65(3):1107-1124.
[4] Yuan Y, Cui Y A, Chen B, et al. Fast and high accuracy 3D magnetic anomaly forward modeling based on BTTB matrix[J]. Chinese Journal of Geophysics, 2022, 65(3):1107-1124.
[5] 李丽丽, 周建业, 马国庆, 等. 起伏观测面约束的重磁数据快速联合物性反演方法研究[J]. 地球物理学进展, 2024, 39(4),1447-1456.
doi: 10.6038/pg2024HH0390
[5] Li L L, Zhou J Y, Ma G Q, et al. A study of fast joint physical inversion methods of gravity and magnetic data with undulating observation surface constraints[J]. Progress in Geophysics, 2024, 39(4),1447-1456.
doi: 10.6038/pg2024HH0390
[6] 李玉录, 邢利娟, 拜占红, 等. 综合物探方法在青海省跃进山铁矿勘查中的应用[J]. 物探与化探, 2018, 42(5):889-895.
[6] Li Y L, Xing L J, Bai Z H, et al. The application of comprehensive geophysical prospecting method to the exploration of the Yuejinshan iron deposit in Qinghai[J]. Geophysical and Geochemical Exploration, 2018, 42(5):889-895.
[7] 张明君, 严加永. 重磁3D反演在新疆伊吾县宝山铁矿找矿增储中的应用[J]. 地质与勘探, 2014, 50(1):156-161.
[7] Zhang M J, Yan J Y. Application of gravity and magnetic 3D inversion to ore search and reserve increase in the Baoshan iron deposit,Yiwu County,Xinjiang[J]. Geology and Exploration, 2014, 50(1):156-161.
[8] 刘璎, 孟贵祥, 严加永, 等. 重磁3D物性反演技术在金属矿勘探中的应用[J]. 地质与勘探, 2011, 47(3):448-455.
[8] Liu Y, Meng G X, Yan J Y, et al. Application of 3D property inversion for gravity and magnetic data to metal mineral exploration[J]. Geology and Exploration, 2011, 47(3):448-455.
[9] 胡斌, 贾正元, 张贵宾, 等. 青藏高原冈底斯带及邻区重磁三维反演及岩浆岩特征研究[J]. 地球物理学报, 2019, 62(4):1362-1376.
doi: 10.6038/cjg2019M0467
[9] Hu B, Jia Z Y, Zhang G B, et al. Three-dimensional inversion of gravity and magnetic data and its application in the study on the characteristics of magmatic rocks in the Gangdise belt and adjacent areas,Tibetan Plateau[J]. Chinese Journal of Geophysics, 2019, 62(4):1362-1376.
[10] 赵理芳, 李希元, 李成立, 等. 基于重、磁、电法的多宝山矿集区隐伏斑岩体识别与深部找矿实践[J]. 矿床地质, 2022, 41(6):1217-1231.
[10] Zhao L F, Li X Y, Li C L, et al. Recognition of concealed porphyry body and deep prospecting practice in Duobaoshan ore concentration area based on gravity,magnetic and electromagnetic surveys[J]. Mineral Deposits, 2022, 41(6):1217-1231.
[11] 索奎, 张贵宾, 梅岩辉, 等. 重磁三维反演伊犁盆地中部密度和磁性结构[J]. 地球物理学报, 2018, 61(8):3410-3419.
doi: 10.6038/cjg2018L0645
[11] Suo K, Zhang G B, Mei Y H, et al. Density and magnetic susceptibility distribution of central Yili Basin by three-dimensional inversion of gravity and magnetic data[J]. Chinese Journal of Geophysics, 2018, 61(8):3410-3419.
[12] 严加永, 吕庆田, 陈向斌, 等. 基于重磁反演的三维岩性填图试验——以安徽庐枞矿集区为例[J]. 岩石学报, 2014, 30(4):1041-1053.
[12] Yan J Y, Lyu Q T, Chen X B, et al. 3D lithologic mapping test based on 3D inversion of gravity and magnetic data:A case study in Lu-Zong ore concentration district,Anhui Province[J]. Acta Petrologica Sinica, 2014, 30(4):1041-1053.
[13] 饶椿锋, 于鹏, 胡书凡, 等. 基于加权模型参数的归一化磁源强度三维反演[J]. 石油物探, 2017, 56(4):599-606.
doi: 10.3969/j.issn.1000-1441.2017.04.017
[13] Rao C F, Yu P, Hu S F, et al. The 3D inversion of the normalized source strength data based on weighted model parameters[J]. Geophysical Prospecting for Petroleum, 2017, 56(4):599-606.
doi: 10.3969/j.issn.1000-1441.2017.04.017
[14] 王婕, 姚长利, 李泽林. 磁异常揭示的峨眉山大火成岩省的深部结构[J]. 地球物理学报, 2019, 62(4):1394-1404.
[14] Wang J, Yao C L, Li Z L. Deep structure in the Emeishan large igneous province revealed by inversion of magnetic anomalies[J]. Chinese Journal of Geophysics, 2019, 62(4):1394-1404.
[15] 张志厚, 路润琪, 廖晓龙, 等. 基于全卷积神经网络的磁异常及磁梯度异常反演[J]. 地球物理学进展, 2021, 36(1):325-337.
[15] Zhang Z H, Lu R Q, Liao X L, et al. Inversion of magnetic anomaly and magnetic gradient anomaly based on fully convolution network[J]. Progress in Geophysics, 2021, 36(1):325-337.
[16] 李泽林, 姚长利, 郑元满, 等. 数据空间磁异常模量三维反演[J]. 地球物理学报, 2015, 58(10):3804-3814.
doi: 10.6038/cjg20151030
[16] Li Z L, Yao C L, Zheng Y M, et al. 3D data-space inversion of magnetic amplitude data[J]. Chinese Journal of Geophysics, 2015, 58(10):3804-3814.
[17] 张恒磊, 耿美霞, 胡祥云. 基于曲波压缩的重磁异常三维反演及其应用[J]. 石油地球物理勘探, 2023, 58 (4):993-1001.
[17] Zhang H L, Geng M X, Hu X Y. Three-dimensional inversion of gravity/magnetic anomalies based on curvelet compression and its applications[J]. Oil Geophysical Prospecting, 2023, 58(4):993-1001.
[18] Li Y G, Oldenburg D W. Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method[J]. Geophysical Journal International, 2003, 152(2):251-265.
[19] 朱朝吉, 周肇武, 刘天佑, 等. 高精度磁测找矿效果:以青海尕林格矿区为例[J]. 地质与勘探, 2011, 47(2):277-283.
[19] Zhu C J, Zhou Z W, Liu T Y, et al. Application of high-precision magnetic survey to prospecting:A case study in the Galinge ore district of Qinghai Province[J]. Geology and Exploration, 2011, 47(2):277-283.
[20] Zhang H L, Ravat D, Marangoni Y R, et al. NAV-Edge:Edge detection of potential-field sources using normalized anisotropy variance[J]. Geophysics, 2014, 79(3):43-53.
[21] Zhang H L, Ravat D, Hu X Y. An improved and stable downward continuation of potential field data:The truncated Taylor series iterative downward continuation method[J]. Geophysics, 2013, 78(5):75-86.
[22] 刘双, 刘天佑, 曾琴琴. 根据磁异常确定磁性体上顶埋深的几种反演方法——以尕林格矿区磁测资料解释为例[J]. 工程地球物理学报, 2012, 9(4):413-418.
[22] Liu S, Liu T Y, Zeng Q Q. On inversion methods of estimating top buried depth of magnetic body based on magnetic anomalies:A case study of magnetic datainterpretation in Galinge mining area[J]. Chinese Journal of Engineering Geophysics, 2012, 9(4):413-418.
[23] Huang L, Zhang H L, Sekelani S, et al. An improved Tilt-Euler deconvolution and its application on a Fe-polymetallic deposit[J]. Ore Geology Reviews, 2019, 114:103114.
[24] Zhang H L, Li H P, Hu X Y. Fine interpretation of magnetic data for a concealed mineral deposit:A case study of the Fe-polymetallic deposit from Western China[J]. Journal of Applied Geophysics, 2024, 228:105468.
[25] Zhang H L, Ravat D, Marangoni Y R, et al. Improved total magnetization direction determination by correlation of the normalized source strength derivative and the reduced-to-pole fields[J]. Geophysics, 2018, 83(6):75-85.
[26] 张恒磊, 刘天佑, 朱朝吉, 等. 高精度磁测找矿效果—以青海尕林格矿区为例[J]. 物探与化探, 2011, 35(1):12-16.
[26] Zhang H L, Liu T Y, Zhu C J, et al. The effects of applying high-precision magnetic survey:A case study of the Galinge ore district in Qinghai province[J]. Geophysical and Geochemical Exploration, 2011, 35(1):12-16.
[27] 宋双, 张恒磊. 向下延拓在深部矿产勘探中的应用——以青海某矿区为例[J]. 物探与化探, 2014, 38(6):1195-1199.
[27] Song S, Zhang H L. The application of downward continuation to deep mineral exploration:A case study of an ore district in Qinghai Province[J]. Geophysical and Geochemical Exploration, 2014, 38(6):1195-1199.
[28] 张恒磊, Y.R.Marangoni, 左仁广, 等. 改进的各向异性标准化方差探测斜磁化磁异常源边界[J]. 地球物理学报, 2014, 57 (8):2724-2731.
doi: 10.6038/cjg20140830
[28] Zhang H L, Y R Marangoni, Zuo R G, et al. The improved anisotropy normalized variance for detecting non-vertical magnetization anomalies[J]. Chinese Journal of Geophysics, 2014, 57(8):2724-2731.
[1] 姜国庆, 郝社锋, 喻永祥, 杜建国, 李明, 尚通晓, 宋京雷. 基于三维电阻率反演的滑坡地质灾害调查——以无锡市雪浪山景区滑坡为例[J]. 物探与化探, 2024, 48(6): 1720-1729.
[2] 郭培虹, 冯治汉, 王万银, 唐小平, 刘生荣. 北秦岭华阳川地区重磁三维反演及岩浆岩特征研究[J]. 物探与化探, 2021, 45(5): 1217-1225.
[3] 郭楚枫, 张世晖, 刘天佑. 三维磁场有限元—无限元耦合数值模拟[J]. 物探与化探, 2021, 45(3): 726-736.
[4] 周俊杰, 陈聪, 喻翔, 高玲举, 陈涛. 矿区重力三维物性反演的参考模型构建方法及应用[J]. 物探与化探, 2020, 44(4): 878-885.
[5] 王昊, 严加永, 孟贵祥, 吕庆田, 王栩. 地磁梯度测量及其在金属矿勘查中的试验——以拉依克勒克铜铁矿为例[J]. 物探与化探, 2019, 43(6): 1173-1181.
[6] 朱裕振, 强建科, 王林飞, 张文艳, 戴世坤. 深埋铁矿磁测数据三维反演分析与找矿靶区预测[J]. 物探与化探, 2019, 43(6): 1182-1190.
[7] 孟凡松, 张刚, 陈梦君, 李怀良. 高密度电阻率法二维勘探数据的三维反演及其在岩溶探测中的应用[J]. 物探与化探, 2019, 43(3): 672-678.
[8] 罗凡, 严加永, 付光明. 基于已知信息约束的重磁三维反演在深部磁铁矿勘查中的应用——以安徽泥河铁矿为例[J]. 物探与化探, 2018, 42(1): 50-60.
[9] 韩雪, 朱伟国. 起伏地形条件下电阻率法三维反演[J]. 物探与化探, 2017, 41(1): 136-140.
[10] 李午阳, 张健, 林巍. 基于CUDA的GPU并行优化重力三维反演[J]. 物探与化探, 2016, 40(1): 179-184.
[11] 仇根根, 张小博, 裴发根, 袁永真, 白大为, 张鹏辉. 大地电磁测深反演技术有效性对比试验[J]. 物探与化探, 2015, 39(1): 118-124.
[12] 宋双, 张恒磊. 向下延拓在深部矿产勘探中的应用——以青海某矿区为例[J]. 物探与化探, 2014, 38(6): 1195-1199.
[13] 张天龙, 张维, 王忠义, 张福斌, 李斌, 杨立伟. 冀东滦南一带重磁异常特征及找矿意义[J]. 物探与化探, 2014, 38(4): 641-648.
[14] 郭莹, 曲赞, 范志雄, 王传雷. 关于磁测工作质量检查方式的实验及讨论[J]. 物探与化探, 2014, 38(4): 781-786.
[15] 吴志春, 郭福生, 谢财富, 刘林清, 姜勇彪. 江西省相山铀多金属矿田 重磁坡度异常提取与成矿预测[J]. 物探与化探, 2013, 37(3): 453-460.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com