Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1448-1454    DOI: 10.11720/wtyht.2024.0165
  “地球物理仪器新技术”专栏(特约专栏主编:邓明) 本期目录 | 过刊浏览 | 高级检索 |
海洋可控源电磁的任意频率波形产生技术研究
王洁1(), 王猛1,2(), 任志滨1, 王宸韬1, 王会敏1
1.中国地质大学(北京) 地球物理与信息技术学院,北京 100083
2.陆内火山与地震教育部重点实验室 中国地质大学(北京),北京 100083
Marine controlled-source electromagnetics-based technology for generating arbitrary-frequency waveforms
WANG Jie1(), WANG Meng1,2(), REN Zhi-Bin1, WANG Chen-Tao1, WANG Hui-Min1
1. School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, China
2. Key Laboratory of Intraplate Volcanoes and Earthquakes, Ministry of Education, China University of Geosciences (Beijing), Beijing 100083, China
全文: PDF(2713 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

海洋可控源电磁(marine controlled-source electromagnetic, MCSEM)探测方法通过揭示海底以下的电性差异来探测油气和天然气水合物等资源,以及深部地质构造。不同的激发频率对应不同的探测深度,为了更好地对海底以下目标进行电性成像,本文开展了海洋可控源电磁的任意频率波形产生技术的研究,用于灵活改变激发频率,提升勘探效果和效率。本论文基于直接数字频率合成(DDS)芯片AD9833,通过单片机和复杂可编程逻辑器件(CPLD)联合调控,可以在海洋可控源电磁探测中发射0~100 Hz的步进0.01 Hz的任意单频驱动信号,实现了有限精度任意频率波形的产生。最后对测试技术指标进行分析后得出,任意频率波形产生技术可以有效提高MCSEM的频谱适应性和灵活性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王洁
王猛
任志滨
王宸韬
王会敏
关键词 海洋可控源电磁法DDS任意频率波形STM32CPLD    
Abstract

Marine controlled-source electromagnetics (MCSEM) is used to explore resources such as oil and gas hydrates, as well as deep geological structures, by revealing resistivity differences below the seabed. Different excitation frequencies correspond to varying detection depths. To enhance the resistivity imaging of targets beneath the seabed, this study investigated the MCSEM-based technology for generating arbitrary-frequency waveforms to flexibly alter the excitation frequency and improve the exploration effectiveness and efficiency. Using the direct digital frequency synthesis (DDS) chip AD9833 and the joint control of a microcontroller and a complex programmable logic device (CPLD), this study achieved the generation of arbitrary-frequency waveforms with limited precision. The test results indicate that this technology can effectively enhance the spectral adaptability and flexibility of MCSEM.

Key wordsmarine controlled-source electromagnetics (MCSEM)    direct digital frequency synthesis (DDS)    arbitrary-frequency waveform    STM32    complex programmable logic device (CPLD)
收稿日期: 2024-04-15      修回日期: 2024-08-08      出版日期: 2024-12-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目(42374221)
通讯作者: 王猛(1984-),男,河南省许昌市,博士,副教授,研究方向为地球物理仪器。Email:wangmeng@cugb.edu.cn
引用本文:   
王洁, 王猛, 任志滨, 王宸韬, 王会敏. 海洋可控源电磁的任意频率波形产生技术研究[J]. 物探与化探, 2024, 48(6): 1448-1454.
WANG Jie, WANG Meng, REN Zhi-Bin, WANG Chen-Tao, WANG Hui-Min. Marine controlled-source electromagnetics-based technology for generating arbitrary-frequency waveforms. Geophysical and Geochemical Exploration, 2024, 48(6): 1448-1454.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.0165      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1448
Fig.1  AD9833基本结构原理
Fig.2  总体设计
Fig.3  系统组成
Fig.4  信号产生电路
Fig.5  整体程序工作流程
D15 D14 D13 D12 D11 D10 D9 D8
0 0 B28 HLB FSEL
ECT
PSEL
ECT
0 RESET
Table 1  D15至D8控制位功能
D7 D6 D5 D4 D3 D2 D1 D0
SLE
EP1
SLE
EP12
OPBI
TEN
0 DIV2 0 MODE 0
Table 2  D7至D0控制位功能
OPBITEN位 MODE位 DIV2位 VOUT脚
0 0 X 正弦波
0 1 X 三角波
1 0 0 方波(DAC数据MSB/2)
1 0 1 方波(DAC数据MSB)
1 1 X 保留
Table 3  VOUT波形输出逻辑
Fig.6  上位机界面
Fig.7  测试实物
Fig.8  不同频点直接频率测试结果
Fig.9  1.00 Hz调整频率步进值测试结果
主要参数 技术指标
输出频率范围/Hz 0.01~100
频率分辨率/Hz 0.01
频率步进值/Hz 0.01
频率稳定度(常温) ±20 ppm(25±2 ℃)
Table 4  性能技术指标
[1] 沈金松, 陈小宏. 海洋油气勘探中可控源电磁探测法(CSEM)的发展与启示[J]. 石油地球物理勘探, 2009, 44(1):119-127,130,11.
[1] Shen J S, Chen X H. Development and enlightenment of controlled-source electromagnetic (CSEM) surveying method in marine oil/gas exploration[J]. Oil Geophysical Prospecting, 2009, 44(1):119-127,130,11.
[2] 刘慧, 高新伟. 国家能源安全视角下的海洋油气资源开发战略研究[J]. 理论探讨, 2015(6):103-106.
[2] Liu H, Gao X W. Research on development strategy of offshore oil and gas resources from the perspective of national energy security[J]. Theoretical Investigation, 2015(6):103-106.
[3] 邓明, 景建恩, 郭林燕, 等. MCSEM电磁场能流密度分布特征研究[J]. 地球物理学报, 2017, 60(11):4149-4159.
doi: 10.6038/cjg20171102
[3] Deng M, Jing J E, Guo L Y, et al. The distribution characteristics of the energy flow density of MCSEM[J]. Chinese Journal of Geophysics, 2017, 60(11):4149-4159.
[4] Cox C. Electromagnetic induction in the oceans and inferences on the constitution of the earth[J]. Geophysical Surveys, 1980, 4(1):137-156.
[5] Cox C S. On the electrical conductivity of the oceanic lithosphere[J]. Physics of the Earth and Planetary Interiors, 1981, 25(3):196-201.
[6] Constable S, Cox C S. Marine controlled-source electromagnetic sounding:2.The PEGASUS experiment[J]. Journal of Geophysical Research:Solid Earth, 1996, 101(B3):5519-5530.
[7] Sinha M C, Patel P D, Unsworth M J, et al. An active source electromagnetic sounding system for marine use[J]. Marine Geophysical Researches, 1990, 12(1):59-68.
[8] Enstedt M, Skogman J, Mattsson J. Propagation of uncertainty associated with towed streamer EM system data acquired 2012 into a 3D inversion model[C]// SEG Technical Program Expanded Abstracts, 2013.
[9] Hanssen P, Nguyen A K, Fogelin L T T, et al. The next generation offshore CSEM acquisition system[C]// SEG Technical Program Expanded Abstracts, 2017.
[10] Duan N N, Wang M, Wang G X, et al. Research on the isolation and collection method of multi-channel temperature and power supply voltage under strong marine controlled source EMI[J]. IEEE Access, 2019, 7:6400-6411.
[11] 刘颖. 海洋可控源电磁法二维有限元正演及反演[D]. 青岛: 中国海洋大学, 2014.
[11] Liu Y. Two-dimensional finite element forward modeling and inversion of marine controlled source electromagnetic method[D]. Qingdao: Ocean University of China, 2014.
[12] 王猛, 张汉泉, 伍忠良, 等. 勘查天然气水合物资源的海洋可控源电磁发射系统[J]. 地球物理学报, 2013, 56(11):3708-3717.
[12] Wang M, Zhang H Q, Wu Z L, et al. Marine controlled source electromagnetic launch system for natural gas hydrate resource exploration[J]. Chinese Journal of Geophysics, 2013, 56(11):3708-3717.
[13] Wang M, Deng M, Wu Z L, et al. The deep-tow marine controlled-source electromagnetic transmitter system for gas hydrate exploration[J]. Journal of Applied Geophysics, 2017, 137:138-144.
[14] 覃晓, 蒋荣萍. 基于DDS芯片AD9833的低频信号发生器[J]. 大众科技, 2008, 10(10):29-30,17.
[14] Qin X, Jiang R P. Low frequency signal generator based on DDS chip AD9833[J]. Popular Science & Technology, 2008, 10(10):29-30,17.
[1] 孔繁祥, 谭捍东, 刘建勋. 海洋可控源电磁法与地震全波形二维联合反演研究[J]. 物探与化探, 2024, 48(1): 67-76.
[2] 邓明, 王猛, 吴雯, 马晓茜, 罗贤虎. 海洋可控源电磁发射系统中的绝缘在线监测技术研究[J]. 物探与化探, 2022, 46(3): 537-543.
[3] 周四春, 张保静, 杨宇奇. 智能动态地气采样装置研制[J]. 物探与化探, 2012, 36(6): 1059-1063.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com