Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1463-1470    DOI: 10.11720/wtyht.2024.0152
  “地球物理仪器新技术”专栏(特约专栏主编:邓明) 本期目录 | 过刊浏览 | 高级检索 |
石墨烯基电场传感器研发与测试
康利利1,2,3(), 杨永友1,2,3,4, 王中兴1,2,3,4(), 陈凯5, 何朋6, 王绪哲6, 丁古巧6, 李子航1,2,3
1.中国科学院 地质与地球物理研究所,北京 100029
2.中国科学院 深层油气理论与智能勘探开发重点实验室,北京 100029
3.中国科学院 地球科学研究院,北京 100029
4.中国科学院大学 地球与行星科学学院,北京 100049
5.中国地质大学(北京) 地球物理与信息技术学院,北京100083
6.中科悦达(上海)材料科技有限公司,上海 201808
R&D and tests of a graphene-based electric field sensor
KANG Li-Li1,2,3(), YANG Yong-You1,2,3,4, WANG Zhong-Xing1,2,3,4(), CHEN Kai5, HE Peng6, WANG Xu-Zhe6, DING Gu-Qiao6, LI Zi-Hang1,2,3
1. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
2. Key Laboratory of Deep Petroleum Intelligent Exploration and Development, Chinese Academy of Sciences, Beijing 100029, China
3. Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
4. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
5. College of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, China
6. Zhongke Yueda (Shanghai) Materials Technology Co., Ltd., Shanghai 201808, China
全文: PDF(5234 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为进一步降低电磁探测系统中电场传感器的极差漂移与本底噪声,提升电场测量精度,本文通过研究极差漂移和本底噪声的产生机理,明确了电场传感器的设计需求,攻克了基于Ag-AgCl体系的石墨烯基稳定电解质凝胶制备工艺,优化设计了基于高分子微孔隔膜的多仓式、多触角电极结构,研制了低极差漂移、低噪声的石墨烯基电场传感器。该传感器利用石墨烯的离子保持能力,结合反应区、过渡区、缓冲区3区分立的多仓式结构,减缓了内部离子扩散速率,从而降低了因离子浓度变化而引起的极差漂移。利用石墨烯的导电能力降低了电场传感器的内阻,通过多触角增强与大地的接触,降低了电场传感器的接触电阻,从而降低了电场传感器的本底噪声。所研制的石墨烯基电场传感器极差漂移不超过20 μV/24 h,本底噪声不高于25 nV/ H z。在黑龙江多宝山地区开展了24小时野外大地电磁探测试验,获取了0.000 125~320 Hz频段的高质量电场数据,视电阻率相位曲线与商用电极测量结果一致,验证了石墨烯基电场传感器的野外工作有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
康利利
杨永友
王中兴
陈凯
何朋
王绪哲
丁古巧
李子航
关键词 电磁探测电场传感器石墨烯低极差漂移低噪声    
Abstract

This study aims to enhance the measurement accuracy of the electric field by reducing the range shifting and background noise of electric field sensors in the electromagnetic detection system. First, it ascertained the design requirements of electric field sensors by investigating the mechanisms of the range drift and background noise. Second, it established the Ag-AgCl-based preparation process for graphene-based stable electrolyte gel. Third, it optimized the multi-cell multi-contactor electrode structure based on polymeric microporous membranes. Finally, it developed a graphene-based electric field sensor characterized by low range drift and background noise. This sensor can retard internal ion diffusion by leveraging the ion retention ability of graphene and the multi-cell structure composed of reaction, transition, and buffer zones. Consequently, the range drift caused by changes in the ion concentration is reduced. The internal and contact resistance of this sensor can be reduced through the conductive ability of graphene and the enhanced contact with the ground via multiple contactors, respectively, thereby reducing the sensor's background noise. The graphene-based electric field sensor developed in this study shows range drift not exceeding 20 μV/24 h, and background noise not above 25 nV/√Hz. This sensor was applied to a 24 h field magnetotelluric sounding test conducted in the Duobaoshan area, Heilongjiang Province, yielding high-quality electric field data in the frequency band of 0.000 125~320 Hz, with the apparent resistivity phase curve aligning with the result of commercial electrodes. Therefore, the graphene-based electric field sensor proves effective in fieldwork.

Key wordselectromagnetic detection    electric field sensor    graphene    low range drift    low noise
收稿日期: 2024-04-07      修回日期: 2024-06-26      出版日期: 2024-12-20
ZTFLH:  P631  
基金资助:国家重点研发计划“基础科研条件与重大科学仪器设备研发”重点专项(2022YFF0706203);国家重点研发计划“智能传感器”重点专项(2021YFB3202103)
通讯作者: 王中兴(1980-),男,2010年获得吉林大学工学博士学位,主要从事地球物理探测技术装备研发工作。Email: zxwang@mail.iggcas.ac.cn
引用本文:   
康利利, 杨永友, 王中兴, 陈凯, 何朋, 王绪哲, 丁古巧, 李子航. 石墨烯基电场传感器研发与测试[J]. 物探与化探, 2024, 48(6): 1463-1470.
KANG Li-Li, YANG Yong-You, WANG Zhong-Xing, CHEN Kai, HE Peng, WANG Xu-Zhe, DING Gu-Qiao, LI Zi-Hang. R&D and tests of a graphene-based electric field sensor. Geophysical and Geochemical Exploration, 2024, 48(6): 1463-1470.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.0152      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1463
Fig.1  电场测量等效电路模型
Fig.2  Ag-AgCl体系不极化电极的电化学反应过程示意
Fig.3  不同质量比重的氧化石墨烯凝胶形态
Fig.4  不同质量比重氧化石墨烯凝胶保水性能对比
Fig.5  多触角电场传感器结构设计
Fig.6  多触角电场传感器结构俯视分区示意
Fig.7  极差与极差漂移测试平台
Fig.8  极差与极差漂移连续5天的测试比对结果
Fig.9  每日极差漂移比对结果
项目 每日极差漂移结果/μV 标准
差/μV
第1天 第2天 第3天 第4天 第5天
自研电极1 9.1 5.3 3.1 1.4 7.8 3.2
自研电极2 11.0 3.9 9.4 7.1 5.2 2.9
商用电极 3.7 6.8 15.5 16.7 12.0 5.6
Table 1  连续5天的每日极差漂移测量结果统计
设备名 用途 主要技术指标 实物图片
高精度多路
噪声分析
装置
噪声
测量
本底噪声
优于10nV/
H z@1Hz;
观测带宽
DC~1000Hz
Table 2  本底噪声测试设备及参数指标
被测项目 被测电阻/Ω
自研电极1 322
自研电极2 344
商用电极 1256
  被测电场传感器电阻测试结果 Tabal 3 Resistance of the tested electric field sensors
Fig.10  本底噪声测试比对结果
Fig.11  大地电磁探测试验装置布置
Fig.12  野外实测电场与视电阻率及相位对比结果
[1] Cagniard L. Basic theory of the magneto-telluric method of geophysical prospecting[J]. Geophysics, 1953, 18(3):605.
[2] Tikhonov A N. On determining electrical characteristics of the deep layers of the earth’s crust[J]. Doklady, 1950, 73(2):295-297.
[3] 魏文博. 我国大地电磁测深新进展及瞻望[J]. 地球物理学进展, 2002, 17(2):245-254.
[3] Wei W B. New advance and prospect of magnetotelluric sounding (MT) in China[J]. Progress in Geophysics, 2002, 17(2):245-254.
[4] Egbert G D, Booker J R, Schultz A. Very long period magnetotellurics at Tucson Observatory:Estimation of impedances[J]. Journal of Geophysical Research:Solid Earth, 1992, 97(B11):15113-15128.
[5] Egbert G D, Booker J R. Very long period magnetotellurics at Tucson Observatory:Implications for mantle conductivity[J]. Journal of Geophysical Research:Solid Earth, 1992, 97(B11):15099-15112.
[6] Prystai A M, Pronenko V O. Improving of electrical channels for magnetotelluric sounding instrumentation[J]. Geoscientific Instrumentation Methods and Data Systems, 2015, 4(2):149-154.
[7] 席继楼, 邱颖, 刘超, 等. 电极极化电位对地电场观测影响研究[J]. 地震地磁观测与研究, 2008, 29(6):22-26.
[7] Xi J L, Qiu Y, Liu C, et al. Analysis and study on the influence of polarization potential in measuring geoelectric field[J]. Seismological and Geomagnetic Observation and Research, 2008, 29(6):22-26.
[8] 史红军. 地电场观测过程中的干扰因素分析[J]. 东北地震研究, 2009, 25(2):51-57.
[8] Shi H J. Analysis on the interference factors in geoelectric field observation[J]. Seismological Research of Northeast China, 2009, 25(2):51-57.
[9] Petiau G, Dupis A. Noise,temperature coefficient,and long time stability of electrodes for telluric observations[J]. Geophysical Prospecting, 1980, 28(5):792-804.
[10] 陆阳泉, 梁子斌, 刘建毅. 固体不极化电极的研制及其应用效果[J]. 物探与化探, 1999, 23(1):64-65,71.
[10] Lu Y Q, Liang Z B, Liu J Y. The development and application of solid nonpolarized electrodes[J]. Geophysical and Geochemical Exploration, 1999, 23(1):64-65,71.
[11] 宋艳茹, 席继楼, 刘超, 等. 一种Pb-PbCl2不极化电极试验研究[J]. 地震地磁观测与研究, 2011, 32(6):97-103.
[11] Song Y R, Xi J L, Liu C, et al. Research on a type of Pb-PbCl2 non-polarizable electrode[J]. Seismological and Geomagnetic Observation and Research, 2011, 32(6):97-103.
[12] 王辉, 叶高峰, 魏文博. Pb-PbCl2不极化电极的设计与实现[J]. 地震地磁观测与研究, 2010, 31(3):115-120.
[12] Wang H, Ye G F, Wei W B. The design and implementation of non-polarizable Pb-PbCl2 electrodes[J]. Seismological and Geomagnetic Observation and Research, 2010, 31(3):115-120.
[13] 王辉, 姚硕, 魏文博, 等. Pb-PbCl2不极化电极在长周期大地电磁测深观测中的应用效果[C]// 第二届深海研究与地球系统科学学术研讨会, 2012.
[13] Wang H, Yao S, Wei W B, et al. Application effect of Pb-PbCl2 non-polarized electrode in Long period magnetotelluric sounding observation[C]// Proceedings of the 2nd Symposium on Deep Sea Research and Earth System Science, 2012.
[14] 王辉, 付书计, 葛帅寅, 等. 免维护超低噪声固体不极化电极的研制与性能测试[J]. 物探与化探, 2022, 46(3):714-721.
[14] Wang H, Fu S J, Ge S Y, et al. Development and performance tests of maintenance-free ultra-low noise solid nonpolarizing electrodes[J]. Geophysical and Geochemical Exploration, 2022, 46(3):714-721.
[15] Perrier F E, Petiau G, Clerc G, et al. A one-year systematic study of electrodes for long period measurements of the electric field in geophysical environments[J]. Journal of Geomagnetism and Geoelectricity, 1997, 49(11):1677-1696.
[16] 申振, 宋玉苏, 王烨煊, 等. Ag/AgCl和碳纤维海洋电场电极的探测特性研究[J]. 仪器仪表学报, 2018, 39(2):211-217.
[16] Shen Z, Song Y S, Wang Y X, et al. Study on the detection characteristics of Ag/AgCl and carbon fiber marine electric field electrodes[J]. Chinese Journal of Scientific Instrument, 2018, 39(2):211-217.
[17] Luo W, Dong H B, Ge J, et al. Design and characterization of an ultralow-potential drift Ag/AgCl electric field sensor[C]// The 37th Chinese Control Conference (CCC),IEEE, 2018.
[18] 黄芳丽, 曹全喜, 卫云鸽, 等. Ag/AgCl电极的制备及电化学性能[J]. 电子科技, 2010, 23(6):29-31,34.
[18] Huang F L, Cao Q X, Wei Y G, et al. The preparation and electrochemical performance of Ag/AgCl electrodes[J]. Electronic Science and Technology, 2010, 23(6):29-31,34.
[19] Zhang Z M, Hu J, Wang Y Y, et al. Relationship between microstructure of AgCl film and electrochemical behavior of Ag/AgCl electrode for chloride detection[J]. The Journal on Environmental Degradation of Materials and Its Controb, 2021, 184:109393.
[20] Jin X B, Lu J T, Liu P F, et al. The electrochemical formation and reduction of a thick AgCl deposition layer on a silver substrate[J]. Journal of Electroanalytical Chemistry, 2003, 542:85-96.
[21] Cho K R, Kim M, Kim B, et al. Investigation of the AgCl formation mechanism on the Ag wire surface for the fabrication of a marine low-frequency-electric-field-detection Ag/AgCl sensor electrode[J]. ACS Omega, 2022, 7(29):25110-25121.
doi: 10.1021/acsomega.2c01481 pmid: 35910151
[22] 李红霞, 宋玉苏, 王烨煊, 等. 石墨烯对Ag/AgCl电极水下电场探测性能的影响研究[J]. 兵工学报, 2019, 40(12):2529-2536.
doi: 10.3969/j.issn.1000-1093.2019.12.018
[22] Li H X, Song Y S, Wang Y X, et al. Effect of graphene modification on the detection performance of Ag/AgCl electrode in undersea electric field[J]. Acta Armamentarii, 2019, 40(12):2529-2536.
doi: 10.3969/j.issn.1000-1093.2019.12.018
[23] 陈闻博, 宋玉苏, 李红霞, 等. 石墨烯和粘胶基碳纤维改性Ag/AgCl海洋电场电极的研究[J]. 兵器装备工程学报, 2020, 41(3):173-177.
[23] Chen W B, Song Y S, Li H X, et al. Effect of carbon material modification on Ag/AgCl underwater electric field electrode[J]. Journal of Ordnance Equipment Engineering, 2020, 41(3):173-177.
[24] 李红霞, 宋玉苏, 陈闻博, 等. 石墨烯改性Ag/AgCl电极的表面特性研究[J]. 兵器装备工程学报, 2020, 41(1):184-187.
[24] Li H X, Song Y S, Chen W B, et al. Study on surface properties of graphene modified Ag/AgCl electrode[J]. Journal of Ordnance Equipment Engineering, 2020, 41(1):184-187.
[25] 刘余杰, 李昉. 全固态石墨烯Ag/AgCl海洋电场探测电极的制备及性能研究[J]. 化学工程与装备, 2022(10):8-12.
[25] Liu Y J, Li F. Preparation and Properties of all solid state graphene Ag/AgCl Ocean Electric Field Detection electrode[J]. Chemical Engineering & Equipment, 2022(10):8-12.
[1] 王旭, 陈凯, 芦勇健, 尹曜田. 便携式三分量磁场测量模块[J]. 物探与化探, 2022, 46(6): 1528-1533.
[2] 喻翔, 汪硕, 胡英才, 段书新. 二连盆地北部玄武岩覆盖区电性结构与铀成矿环境研究[J]. 物探与化探, 2022, 46(5): 1157-1166.
[3] 肖月桐, 王猛, 王兴卓, 陈凯, 时宗洋, 赵一宇, 付悦思. 镍酸钐研究进展及其用于海洋电场传感器的可行性分析[J]. 物探与化探, 2022, 46(2): 418-423.
[4] 雷立铭, 舒晴, 杨晔, 程关德. 重力梯度仪用石英挠性加速度计伺服线路噪声分析[J]. 物探与化探, 2015, 39(S1): 22-27.
[5] 李晓利, 张宝林, 郭志华, 赵连锋, 肖骑彬, 张丽莉, 海连富, 李刚. 黄土覆盖区金矿深部地质结构大地电磁探测——以河北怀来颜家沟金矿为例[J]. 物探与化探, 2014, 38(6): 1124-1128.
[6] 卓贤军, 底青云, 张佳炜. 谐波信号在人工源电磁法WEM中的应用[J]. 物探与化探, 2013, 37(5): 830-833,838.
[7] 李勇, 林品荣, 郑采君, 石福升, 徐宝利, 郭鹏. 极低频电磁波技术电磁响应建模及电离层影响分析[J]. 物探与化探, 2010, 34(3): 332-339.
[8] 林君. 电磁探测技术在工程与环境中的应用现状[J]. 物探与化探, 2000, 24(3): 167-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com