Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (3): 578-587    DOI: 10.11720/wtyht.2025.1415
  地质调查资源勘查 本期目录 | 过刊浏览 | 高级检索 |
克孜勒努尔组深层煤层游离气含气饱和度计算
别康1,2,3, 蔡天4, 信毅1,2,3, 刘粤蛟4, 韩闯1,2,3, 孙建孟4()
1.中国石油天然气股份有限公司 塔里木油田公司,新疆 库尔勒 841000
2.中国石油天然气集团有限公司 超深层复杂油气藏勘探开发技术研发中心,新疆 库尔勒 841000
3.新疆维吾尔自治区超深层复杂油气藏勘探开发工程研究中心,新疆 库尔勒 841000
4.中国石油大学(华东) 地球科学与技术学院,山东 青岛 266000
Calculation of free gas saturation in deep coal seams in the Kezilenuer Formation
BIE Kang1,2,3, CAI Tian4, XIN Yi1,2,3, LIU Yue-Jiao4, HAN Chuang1,2,3, SUN Jian-Meng4()
1. Tarim Oilfield Company, PetroChina, Korla 841000, China
2. R&D Center for Ultra-Deep Complex Reservoir Exploration and Development, CNPC, Korla 841000, China
3. Engineering Research Center of Ultra-deep Complex Oil and Gas Reservoir Exploration and Development, Xinjiang Uygur Autonomous Region, Korla 841000, China
4. School of Geosciences, China University of Petroleum (East China), Qingdao 266000, China
全文: PDF(5168 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

深部煤层复杂的地质环境和温度等造成吸附负效应增强,游离气产出。游离气饱和度作为储量预测及指导优化采排方案设计的典型参数,对其进行准确揭示具有重要意义。本文以塔里木盆地库车北部构造带侏罗系克孜勒努尔组超深层(>4 km)煤层气为研究对象,基于等温吸附及现场解析、反推法、阿尔奇公式、元素改进体积模量方法、Gassmann-Wood公式和Gassmann-Brie方程,计算了目的层游离气含气饱和度,结合二维核磁实验资料对比分析了这几种饱和度计算方法,结果表明:元素改进体积模量方法、Gassmann-Wood公式与Gassmann-Brie方程更适合研究区域深层煤层游离气饱和度的计算。研究结果可为该区块深层游离气饱和度计算提供重要参考,进一步指导并推进研究区深层煤层气的勘探开发。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
别康
蔡天
信毅
刘粤蛟
韩闯
孙建孟
关键词 深层煤层气游离气饱和度克孜勒努尔组二维核磁    
Abstract

Compared to shallow coal seams, deep coal seams have gradually transitioned into a complex geologic environment characterized by high temperatures, pressures, and in situ stresses, and low permeability. Temperature and other conditions result in enhanced negative adsorption effects, leading to free gas production. Free gas saturation serves as a typical parameter for predicting reserves and guiding the optimal design of production and drainage plans, rendering its accurate determination highly significant. This study investigated the coalbed methane in the Jurassic Kezilenuer Formation in the tectonic zone north of the Kuqa depression within the Tarim Basin. It calculated the free gas saturation in the target layer based on adsorption isotherms, field analysis, inversion, the element-modified bulk modulus method, and the Archie, Gassmann-Wood, and Gassmann-Brie equations. Furthermore, it comparatively analyzed the results derived from these calculation methods combined with two-dimensional nuclear magnetic resonance data. The results indicate that the element-modified bulk modulus method and the Gassmann-Wood and Gassmann-Brie equations are more appropriate calculation methods for the study area. Overall, the results of this study provide a valuable reference for calculating free gas saturation in deep coal seams in the study area, further guiding and advancing the exploration and production of deep coalbed methane.

Key wordsdeep coalbed methane    free gas saturation    Kezilenuer Formation    two-dimensional nuclear magnetic resonance
收稿日期: 2024-10-10      修回日期: 2024-12-04      出版日期: 2025-06-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目“基于数字岩石的深部煤层气弹性和声学响应机理研究”(42474156);塔里木油田公司科技项目“库车北部构造带侏罗系煤岩气测井解释评价方法研究”(T202424)
通讯作者: 孙建孟(1964-),男,教授,博导,长期从事测井解释及数字岩心领域的研究与教学工作。Email: sunjm@upc.edu.cn
作者简介: 别康(1991-),男,高级工程师,从事测井方法原理和资料应用研究工作。
引用本文:   
别康, 蔡天, 信毅, 刘粤蛟, 韩闯, 孙建孟. 克孜勒努尔组深层煤层游离气含气饱和度计算[J]. 物探与化探, 2025, 49(3): 578-587.
BIE Kang, CAI Tian, XIN Yi, LIU Yue-Jiao, HAN Chuang, SUN Jian-Meng. Calculation of free gas saturation in deep coal seams in the Kezilenuer Formation. Geophysical and Geochemical Exploration, 2025, 49(3): 578-587.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1415      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I3/578
Fig.1  库车坳陷北部构造带的构造位置(a)和构造纲要(b)[18]
方解石 白云石 伊利石 钾长石 钠长石 黄铁矿 石英
体积模量 70 1 95 21 75.6 75.6 147 37 1 0.05 2.6
剪切模量 29 0.46 45 7 25.6 25.6 133 44 0 0 0
Table 1  常见岩石组分的弹性模量—体积模量[28-29]
Fig.2  研究区5号与8号煤的等温吸附与核磁联测实验结果
Fig.3  研究区煤样品的二维核磁实验结果
Fig.4  二维核磁流体识别标准图谱及解析气统计
Fig.5  不同方法游离气饱和度计算结果对比
Fig.6  研究区X井游离气饱和度计算结果
[1] Xia L Y, Yin Y J, Yu X, et al. An approach to grading coalbed methane resources in China for the purpose of implementing a differential production subsidy[J]. Petroleum Science, 2019, 16(2):447-457.
[2] 霍晓燕, 侯美玲. 煤层气储层地质研究进展[J]. 中国矿业, 2024, 33(S1):10-15.
[2] Huo X Y, Hou M L. Research progress of coalbed methane reservoir geology[J]. China Mining Magazine, 2024, 33(S1):10-15.
[3] 吴裕根, 门相勇, 娄钰. 我国“十四五” 煤层气勘探开发新进展与前景展望[J]. 中国石油勘探, 2024, 29(1):1-13.
doi: 10.3969/j.issn.1672-7703.2024.01.001
[3] Wu Y G, Men X Y, Lou Y. New progress and prospect of coalbed methane exploration and development in China during the 14th Five-Year Plan period[J]. China Petroleum Exploration, 2024, 29(1):1-13.
[4] 苏育飞, 宋儒. 沁水盆地榆社武乡区块深部煤层气地质特征研究及可改造性评价[J]. 中国煤炭地质, 2023, 35(5):46-57.
[4] Su Y F, Song R. Study on geological characteristics of deep CBM in Yushewu block,Qinshui basin and evaluation of transformability[J]. Coal Geology of China, 2023, 35(5):46-57.
[5] Li H Q, Zhou G X, Chen S D, et al. In situ gas content and extraction potential of ultra-deep coalbed methane in the Sichuan basin,China[J]. Natural Resources Research, 2025, 34(1):563-579.
[6] Tonnsen R R, Miskimins J. Simulation of deep-coalbed-methane permeability and production assuming variable pore-volume compressibility[J]. Journal of Canadian Petroleum Technology, 2011, 50(5):23-31.
[7] 徐凤银, 王成旺, 熊先钺, 等. 鄂尔多斯盆地东缘深部煤层气成藏演化规律与勘探开发实践[J]. 石油学报, 2023, 44(11):1764-1780.
doi: 10.7623/syxb202311002
[7] Xu F Y, Wang C W, Xiong X Y, et al. Evolution law of deep coalbed methane reservoir formation and exploration and development practice in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica, 2023, 44(11):1764-1780.
doi: 10.7623/syxb202311002
[8] 孙粉锦, 周国晓, 田文广, 等. 煤层气系统的定义、内涵、形成及应用——以鄂尔多斯盆地石炭系—二叠系煤层为例[J]. 天然气工业, 2024, 44(7):42-53.
[8] Sun F J, Zhou G X, Tian W G, et al. Definition,connotation,formation and application of coalbed methane system:A case study on the Carboniferous-Permian coal seams in the Ordos Basin[J]. Natural Gas Industry, 2024, 44(7):42-53.
[9] Hou X W, Liu S M, Zhu Y M, et al. Evaluation of gas contents for a multi-seam deep coalbed methane reservoir and their geological controls:In situ direct method versus indirect method[J]. Fuel, 2020,265:116917.
[10] Guo P, Tang X J, Wen L, et al. Geological characteristics and coalbed methane adsorbability of shallow coal rock in Qinshui Basin,China[J]. Journal of Petroleum Exploration and Production Technology, 2024, 14(11):2901-2912.
[11] 王辰, 冯增朝, 周动, 等. 煤层气赋存的分形特征研究[J]. 地球物理学报, 2019, 62(9):3571-3579.
doi: 10.6038/cjg2019M0337
[11] Wang C, Feng Z C, Zhou D, et al. Study on fractal characteristics of coalbed gas occurrence[J]. Chinese Journal of Geophysics, 2019, 62(9):3571-3579.
[12] 石军太, 曹敬添, 徐凤银, 等. 深部煤层气游离气饱和度计算模型及其应用[J]. 煤田地质与勘探, 2024, 52(2):134-146.
[12] Shi J T, Cao J T, Xu F Y, et al. A calculation model of free gas saturation in deep coalbed methane reservoirs and its application[J]. Coal Geology & Exploration, 2024, 52(2):134-146.
[13] 徐凤银, 聂志宏, 孙伟, 等. 鄂尔多斯盆地东缘深部煤层气高效开发理论技术体系[J]. 煤炭学报, 2024, 49(1):528-544.
[13] Xu F Y, Nie Z H, Sun W, et al. Theoretical and technological system for Highly efficient development of deep coalbed methane in the Eastern edge of Erdos Basin[J]. Journal of China Coal Society, 2024, 49(1):528-544.
[14] 秦勇. 中国深部煤层气地质研究进展[J]. 石油学报, 2023, 44(11):1791-1811.
doi: 10.7623/syxb202311004
[14] Qin Y. Progress on geological research of deep coalbed methane in China[J]. Acta Petrolei Sinica, 2023, 44(11):1791-1811.
doi: 10.7623/syxb202311004
[15] 何发岐, 董昭雄, 赵兰, 等. 深部煤层游离气形成机理及资源意义[J]. 断块油气田, 2021, 28(5):604-608,613.
[15] He F Q, Dong Z X, Zhao L, et al. Formation mechanism and resource significance of free gas in deep coalbed[J]. Fault-Block Oil & Gas Field, 2021, 28(5):604-608,613.
[16] Gao T Z, Ding X J, Yang X Z, et al. Geochemical characteristics and depositional environment of coal-measure hydrocarbon source rocks in the northern tectonic belt,kuqa depression[J]. Applied Sciences, 2022, 12(19):9464.
[17] 徐振平, 杨庚兄, 罗浩渝, 等. 不同深度岩性差异对库车坳陷构造分段特征的影响[J]. 地球科学, 2024, 49(8):3029-3042.
[17] Xu Z P, Yang G X, Luo H Y, et al. The influence lithologic differences at different depths on the segmentation between the eastern and the western zones of kuqa depression[J]. Earth Science, 2024, 49(8):3029-3042.
[18] 王珂, 杨海军, 李勇, 等. 塔里木盆地库车坳陷北部构造带地质特征与勘探潜力[J]. 石油学报, 2021, 42(7):885-905.
doi: 10.7623/syxb202107005
[18] Wang K, Yang H J, Li Y, et al. Geological characteristics and exploration potential of the northern tectonic belt of Kuqa depression in Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(7):885-905.
doi: 10.7623/syxb202107005
[19] 王清华, 杨海军, 蔡振忠, 等. 塔里木盆地库车南斜坡托探1井油气勘探重大突破及意义[J]. 中国石油勘探, 2023, 28(5):28-42.
doi: 10.3969/j.issn.1672-7703.2023.05.003
[19] Wang Q H, Yang H J, Cai Z Z, et al. Major breakthrough and significance of petroleum exploration in Well Tuotan 1 on the south slope of Kuqa Depression,Tarim Basin[J]. China Petroleum Exploration, 2023, 28(5):28-42.
[20] Zhang Y F, Xi K L, Cao Y C, et al. Evidence of deep fluid activity in Jurassic tight sandstone reservoirs in the Northern Kuqa Depression[J]. Marine and Petroleum Geology, 2023,153:106284.
[21] 王珂, 肖安成, 曹婷, 等. 塔里木盆地库车坳陷北部构造带地质结构与油气勘探领域[J]. 地质学报, 2022, 96(2):368-386.
[21] Wang K, Xiao A C, Cao T, et al. Geological structures and petroleum exploration fields of the northern tectonic belt in the Kuqa depression,Tarim basin[J]. Acta Geologica Sinica, 2022, 96(2):368-386.
[22] 高和群, 韦重韬, 曹佳, 等. 沁水盆地南部含气饱和度特征[J]. 中国煤层气, 2010, 7(5):28-31.
[22] Gao H Q, Wei C T, Cao J, et al. Characteristics of gas saturation in south of Qinshui basin[J]. China Coalbed Methane, 2010, 7(5):28-31.
[23] 李相方, 任美鹏, 胥珍珍, 等. 高精度全压力全温度范围天然气偏差系数解析计算模型[J]. 石油钻采工艺, 2010, 32(6):57-62.
[23] Li X F, Ren M P, Xu Z Z, et al. A high-precision and whole pressure temperature range analytical calculation model of natural gas Z-factor[J]. Oil Drilling & Production Technology, 2010, 32(6):57-62.
[24] Shi J T, Chang Y C, Wu S G, et al. Development of material balance equations for coalbed methane reservoirs considering dewatering process,gas solubility,pore compressibility and matrix shrinkage[J]. International Journal of Coal Geology, 2018,195:200-216.
[25] 余杰, 李利, 秦瑞宝, 等. 基于电阻率测井的高阶煤层割理孔渗评价方法及效果分析[J]. 中国海上油气, 2021, 33(5):80-86.
[25] Yu J, Li L, Qin R B, et al. Evaluation method and effect analysis of cleat porosity and permeability in high-rank coal bed based on resistivity logging[J]. China Offshore Oil and Gas, 2021, 33(5):80-86.
[26] 梁霄, 汪姗, 周明顺, 等. 基于核磁共振与电阻率测井的煤储层孔隙性评价[J]. 煤炭工程, 2017, 49(8):130-133.
doi: 10.11799/ce201708037
[26] Liang X, Wang S, Zhou M S, et al. Coal seam porosity evaluation based on nuclear magnetic experiment and resistivity log[J]. Coal Engineering, 2017, 49(8):130-133.
[27] 孙小平, 刘春雷, 李贵梅, 等. 基于体积模量的储层含气性定量评价方法[J]. 测井技术, 2023, 47(6):753-757.
[27] Sun X P, Liu C L, Li G M, et al. Quantitative evaluation method of gas bearing based on volume modulus in reservoir[J]. Well Logging Technology, 2023, 47(6):753-757.
[28] 赖富强, 刘粤蛟, 张海杰, 等. 基于数字岩心模拟的深层页岩气储层可压性评价模型[J]. 中国石油大学学报:自然科学版, 2022, 46(5):1-11.
[28] Lai F Q, Liu Y J, Zhang H J, et al. Fracturing properties model of deep shale gas reservoir based on digital core simulation[J]. Journal of China University of Petroleum:Edition of Natural Science, 2022, 46(5):1-11.
[29] Peselnick L, Robie R A. Elastic constants of caleite[J]. J.Appl.Phys., 1963,34:2494-2495.
[30] Gassmann F. Elastic waves through a packing of spheres[J]. Geophysics, 1951, 16(4):673-685.
[31] 刘国强, 谭廷栋. 孔隙度和含气饱和度的弹性模量计算方法[J]. 石油勘探与开发, 1993, 20(5):33-41.
[31] Liu G Q, Tan T D. Porosity and gas-saturation determination using elastic moduli[J]. Petroleum Expoloration and Development, 1993, 20(5):33-41.
[32] Wood A W. A Textbook of Sound[M]. New York,1955.
[33] 周伟一. 基于声波参数的火山岩饱和度模型实验研究及测井应用[D]. 长春: 吉林大学, 2020.
[33] Zhou W Y. Experimental study on volcanic rock saturation model based on acoustic parameters and its logging application[D]. Changchun: Jilin University, 2020.
[34] Brie A, Pampuri F, Marsala A F, et al. Shear sonic interpretation in gas-bearing sands[C]// Proceedings of SPE Annual Technical Conference and Exhibition,1995.
[35] 佘刚, 徐永发, 李世毅, 等. 二维核磁共振测井在柴达木盆地复杂储层流体识别中的应用[J]. 地球物理学进展, 2018, 33(4):1566-1572.
[35] She G, Xu Y F, Li S Y, et al. Application of 2D NMR logging on complex reservoir fluid identification in Qaidam basin[J]. Progress in Geophysics, 2018, 33(4):1566-1572.
[36] 姚艳斌, 刘大锰. 基于核磁共振弛豫谱技术的页岩储层物性与流体特征研究[J]. 煤炭学报, 2018, 43(1):181-189.
[36] Yao Y B, Liu D M. Petrophysical properties and fluids transportation in gas shale:A NMR relaxation spectrum analysis method[J]. Journal of China Coal Society, 2018, 43(1):181-189.
[37] 余杰, 秦瑞宝, 黄涛, 等. 基于核磁共振技术的煤层含气量评价方法[J]. 煤炭科学技术, 2023, 51(11):158-165.
[37] Yu J, Qin R B, Huang T, et al. Evaluating method of gas content of coalbed methane based on nuclear magnetic resonance technology[J]. Coal Science and Technology, 2023, 51(11):158-165.
[38] 石玉江, 蔡文渊, 刘国强, 等. 页岩油储层孔隙流体的全直径岩心二维核磁共振图谱特征及评价方法[J]. 中国石油勘探, 2023, 28(3):132-144.
doi: 10.3969/j.issn.1672-7703.2023.03.011
[38] Shi Y J, Cai W Y, Liu G Q, et al. Full diameter core 2D NMR spectrum characteristics of pore fluid in shale oil reservoir and evaluation method[J]. China Petroleum Exploration, 2023, 28(3):132-144.
[1] 蔡鑫磊, 李谦益, 沈鸿雁, 张阳, 杨飞龙, 张国强, 张宇航, 李萌瑶. 渭河盆地氦气资源勘探地震数据处理难点及对策——以华州—华阴地区为例[J]. 物探与化探, 2025, 49(3): 548-558.
[2] 卢星辰, 邢倩, 许勇, 吕国森, 陈祥忠, 王瑞兴, 黄申硕. 基于大地电磁的南宫地热田地热资源赋存特征[J]. 物探与化探, 2025, 49(3): 559-568.
[3] 马元琨, 温中林, 李积永, 王海成, 陈芳芳, 徐钰, 张蕾, 潘以红. 昆特依气田2区块基岩裂缝预测及孔—缝叠置分析[J]. 物探与化探, 2025, 49(3): 588-598.
[4] 李栋, 张明财, 吴远洋. 音频大地电磁接地电阻校正技术研究[J]. 物探与化探, 2025, 49(3): 614-619.
[5] 韩磊, 李景叶, 耿伟恒, 王永平, 杨骐羽, 张宇宁. 基于L1-2范数约束的叠前多分量地震数据直接反演纵横波速度比方法[J]. 物探与化探, 2025, 49(3): 620-630.
[6] 孙栋华, 陈伟, 程莎莎, 石连成, 张俊伟, 祁平, 杨玉勤. 砂岩型铀矿勘查多元地学信息三维地质建模技术研究[J]. 物探与化探, 2025, 49(3): 631-641.
[7] 汪舒, 王锐, 杨家义, 赵卫升, 廖建. 基于非平稳褶积模型的泊松阻抗及裂缝参数叠前地震各向异性高分辨率直接反演方法[J]. 物探与化探, 2025, 49(3): 642-652.
[8] 莫子奋, 邱达星, 张华, 张春雷, 何承峻, 杨熙熙. 基于阈值迭代法和加速线性Bregman联合的多震源地震数据同时分离和重建[J]. 物探与化探, 2025, 49(3): 653-660.
[9] 李国豪, 吕玉增, 董一凡, 于海涛. 基于正演约束的高密度电法半监督学习反演[J]. 物探与化探, 2025, 49(3): 661-669.
[10] 万伟, 孙启隆, 鲁瑶. 激电介质的人工源频率域电场模拟及其响应特征分析[J]. 物探与化探, 2025, 49(3): 670-678.
[11] 罗姣, 郭文波, 刘长生, 张继锋, 王伟, 徐毅, 张鑫鑫, 陈靖. 频率域地空电磁法磁场三分量全域视电阻率的定义[J]. 物探与化探, 2025, 49(3): 679-686.
[12] 殷岳萌, 王成浩, 李少龙, 张照, 徐飞. 多层泡棉复合吸波材料在探地雷达天线设计中的应用[J]. 物探与化探, 2025, 49(3): 727-733.
[13] 蒋伟龙, 尹奇峰, 余森林, 张华, 邱修权, 黄伟鸿, 鲍兴悦, 丁明岩. 小道距线型密集台阵城市地下空间探测研究与应用[J]. 物探与化探, 2025, 49(3): 734-745.
[14] 邬远明, 邢泽峰, 鲁光银. 西南山岭强震区特长深埋隧道的综合物探应用[J]. 物探与化探, 2025, 49(3): 746-753.
[15] 张郑玉成, 苏建龙. 川东南地区凉高山组致密砂岩岩石物理建模[J]. 物探与化探, 2025, 49(2): 288-298.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com