Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (3): 670-678    DOI: 10.11720/wtyht.2024.1045
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
激电介质的人工源频率域电场模拟及其响应特征分析
万伟1,4(), 孙启隆2, 鲁瑶3
1.东华理工大学 地球物理与测控技术学院,江西 南昌 330013
2.中国地质大学(北京) 地球物理与信息技术学院,北京 100083
3.东方地球物理公司 综合物化探处,河北 涿州 072751
4.自然资源部 地球物理电磁法探测技术重点实验室,河北 廊坊 065000
Simulation and analysis of frequency domain electric field response for induced polarization media
Wan Wei1,4(), Sun Qi-Long2, Lu Yao3
1. School of Geophysics and Measurement-control Technology, East China University of Technology, Nanchang 330013, China
2. School of Geophysics and Information Technology, China University of Geosciences (Beijing),Beijing 100083, China
3. GME & Geochemical Surveys, BGP, Inc., CNPC, Zhuozhou 072751,China
4. Key Laboratory of Geophysical Electromagnetic Probing Technologies of Ministry of Natural Resources of the People’s Republic of China, Langfang 065000, China
全文: PDF(4043 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

激电介质可通过随频率变化的复电阻率参数来表征其电阻和电容特性。为能够准确、高效地模拟人工源激发下激电介质的电磁响应特征,本文通过频率域Maxwell方程建立复电阻率法三维正演控制方程,并以交错网格有限差分法进行差分离散,利用复全局拟最小残差法(QMR)求解离散复线性方程组,并在正演中考虑了电磁效应的作用。首先通过简单层状模型的半解析解对计算精度进行检验,并分别建立较大规模和埋深的金属矿藏模型与较小规模和埋深的有机质渗漏模型,依次计算了两种不同激电模型在低频(1 Hz)、中频(10 Hz)、高频(100 Hz)的电场响应。各模型不同频率的计算结果均表明,残差范数均能随迭代次数较快收敛,验证了该算法的适用性和有效性。最后依据计算结果分析了激电介质电容特性对电场幅值和相位的影响,认为激电介质中电容特性对电场幅值的影响非常小,但对相位的影响非常明显,且激电效应越强,对相位的影响越显著。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
万伟
孙启隆
鲁瑶
关键词 激电效应复电阻率三维正演电场响应    
Abstract

The resistive and capacitive properties of induced polarization(IP) medium can be characterized by complex resistivity parameters that vary with frequency. To accurately and efficiently simulate the electromagnetic responses of IP media when excited by artificial sources, this study establishes a three-dimensional forward modeling framework for complex resistivity method based on the frequency-domain Maxwell's equations. The equation takes into account the impact of electromagnetic effects and is discretized using the staggered grid finite difference method. The complex globally convergent quasi-minimum residual (QMR) method is employed to solve the discretized complex linear equation system. Initially, the accuracy of the calculations is verified through a semi-analytical solution of a simple layered model. Then, Models of large-scale and deep-seated metal ore deposits and smaller-scale and shallow-buried organic matter leakage are then established, and the electric field responses of the two induced polarization models are computed at low frequency (1 Hz), medium frequency (10 Hz), and high frequency (100 Hz). The results at different frequencies for both models indicate rapid convergence of the residual norms with iteration numbers, validating the applicability and effectiveness of the algorithm. Finally, based on the computational results, the influence of capacitive characteristics of the induced polarization medium on the electric field amplitude and phase is analyzed. It is concluded that capacitive characteristics have a minimal impact on the electric field amplitude but a significant effect on the phase, and the stronger the induced polarization effect, the more pronounced the impact on the phase.

Key wordsinduce polarization effects    complex resistivity    3D forward    electric field
收稿日期: 2024-02-05      修回日期: 2024-07-30      出版日期: 2025-06-20
ZTFLH:  P631  
基金资助:自然资源部地球物理电磁法探测技术重点实验室开放课题(KLGEPT202301)
作者简介: 万伟(1989-),男,2019年博士毕业于北京大学,主要从事地球物理电磁法正反演及应用研究工作。Email:wanwei@ecut.edu.cn
引用本文:   
万伟, 孙启隆, 鲁瑶. 激电介质的人工源频率域电场模拟及其响应特征分析[J]. 物探与化探, 2025, 49(3): 670-678.
Wan Wei, Sun Qi-Long, Lu Yao. Simulation and analysis of frequency domain electric field response for induced polarization media. Geophysical and Geochemical Exploration, 2025, 49(3): 670-678.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1045      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I3/670
Fig.1  层状模型一维半解析解与三维数值解对比
Fig.2  矿体三维模型及人工源电磁法观测系统
Fig.3  图2中矿体模型不同频率计算的残差范数随迭代次数变化曲线
Fig.4  含激电矿体模型的不同频率电场幅值 E x I P及相对不含激电矿体模型电场幅值 E x N o I P的变化量ΔEx
Fig.5  含激电矿体模型的不同频率电场相位φIP及相对不含激电矿体模型电场相位φNoIP的变化量Δφ
Fig.6  地表污染渗漏三维模型及人工源电磁观测系统
Fig.7  图6模型不同频率计算的残差范数随迭代次数变化曲线
Fig.8  含激电渗漏模型的不同频率电场幅值 E x I P及相对不含激电矿体模型电场幅值 E x N o I P的变化量ΔEx
Fig.9  含激电渗漏模型的不同频率电场相位φIP及相对不含激电矿体模型电场相位φNoIP的变化量Δφ
[1] Sina S, Dimitrios N, Frederick C. Complex conductivity signatures of microbial induced calcite precipitation,field and laboratory scales[J]. Geophysical Journal International, 2020, 224(3):1811-1824.
[2] 马一行, 颜廷杰, 何鹏, 等. 激发极化法在覆盖区矿产勘查中的应用——以内蒙古昌图锡力锰银铅锌多金属矿勘查为例[J]. 物探与化探, 2019, 43(4):709-717.
[2] Ma Y X, Yan T J, He P, et al. Exploration in coverage area:A case study of the Changtuxili Mn-Ag-Pb-Zn polymetallic ore deposit,Inner Mongolia[J]. Geophysical and Geochemical Exploration, 2019, 43(4):709-717.
[3] Alfouzan F, Alotaibi A, Cox L, et al. Spectral induced polarization survey with distributed array system for mineral exploration:Case study in Saudi Arabia[J]. Minerals, 2020, 10(9):769.
[4] Xing L, Niu J, Zhang S, et al. Experimental study on hydrate saturation evaluation based on complex electrical conductivity of porous media[J]. Journal of Petroleum Science and Engineering, 2022,208:109539.
[5] Revil A, Vaudelet P, Su Z, et al. Induced polarization as a tool to assess mineral deposits:A review[J]. Minerals, 2022, 12(5):571.
[6] 丁学振, 李予国, 刘颖. 激电效应对海洋可控源电磁响应的影响[J]. 石油地球物理勘探, 2018, 53(6):1341-1350.
[6] Ding X Z, Li Y G, Liu Y. Influence of IP Effecs on marine controlled-source electromagnetic responses[J]. Oil Geophysical Prospecting, 2018, 53(6):1341-1350.
[7] 钟华, 唐新功. CSAMT一维正演可视化设计与激发极化效应[J]. 物探与化探, 2022, 46(2):459-466.
[7] Zhong H, Tang X G. Visualization design of 1D CSAMT forward modeling and research on the induced polarization effect[J]. Geophysical and Geochemical Exploration, 2022, 46(2):459-466.
[8] 董莉, 李帝铨, 江沸菠. 改进混合蛙跳算法的CSAMT信号激电信息提取研究[J]. 地球物理学报, 2017, 60(8):3264-3277.
doi: 10.6038/cjg20170831
[8] Dong L, Li D Q, Jiang F B. A new methond based on improved SFLA for IP information extraction from CSAMT signal[J]. Chinese Journal of Geophysics, 2017, 60(8):3264-3277.
[9] Porté J, Bretaudeau F, Girard J F. 3D complex resistivity imaging using controlled source electromagnetic data:A multistage procedure using a second order polynomial parametrization[J]. Geophysical Journal International, 2023, 233(2):839-860.
[10] 徐凯军, 李猛. 基于自适应有限元的复电阻率法2.5维复杂构造电磁场模拟[J]. 地球物理学报, 2018, 61(7):3102-3111.
doi: 10.6038/cjg2018L0321
[10] Xu K J, Li M. 2.5D simulation of the electromagnetic field with complicated structure in the complex resistivity method using adaptive finite element[J]. Chinese Journal of Geophysics, 2018, 61(7):3102-3111.
[11] 曹金华, 李桐林, 刘永亮, 等. 激电和电磁效应对三维复电阻率正演结果的影响研究[J]. 地球物理学进展, 2017, 32(2):579-583.
[11] Cao J H, Li T L, Liu Y L, et al. Study on the influence of IP and EM effects of 3D resistivity modeling results[J]. Progress in Geophysics, 2017, 32(2):579-583.
[12] 殷长春, 缪佳佳, 刘云鹤, 等. 时间域航空电磁法激电效应对电磁扩散的影响[J]. 地球物理学报, 2016, 59(12):4710-4719.
doi: 10.6038/cjg20161230
[12] Yin C C, Miao J J, Liu Y H, et al. The effect of induced polarization on time-domain airborne EM diffusion[J]. Chinese Journal of Geophysics, 2016, 59(12):4710-4719.
[13] Kaminski V, Viezzoli A. Modeling induced polarization effects in helicopter time-domain electromagnetic data:Field case studies[J]. Geophysics, 2017, 82(2):B49-B61.
[14] Günther T, Martin T. Spectral two-dimensional inversion of frequency-domain induced polarisation data from a mining slag heap[J]. Journal of Applied Geophysics, 2016,135:436-448.
[15] 龙秀洁, 陈汉波, 莫亚军, 等. 基于Fractal模型的复电阻率法2.5D有限元数值模拟[J]. 物探与化探, 2022, 46(4):887-896.
[15] Long X J, Chen H B, Mo Y J, et al. Fractal model-based 2.5D finite element modeling of complex resistivity method[J]. Geophysical and Geochemical Exploration, 2022, 46(4):887-896.
[16] Commer M, Newman G, Williams K, et al. 3D induced-polarization data inversion for complex resistivity[J]. Geophysics, 2011, 76(3):F157-F171.
[17] 刘寄仁, 汤井田, 任政勇, 等. 基于Lanczos-模型降阶算法的三维频率域可控源电磁快速正演[J]. 地球物理学报, 2022, 65(6):2326-2339.
[17] Liu J R, Tang J T, Ren Z Y, et al. Fast 3D forward modeling of frequency domain controlled-source electromagnetic method using Lanczos-model order reduction algorithm[J]. Chinese Journal of Geophysics, 2022, 65(6):2326-2339.
[18] 赵宁, 王绪本, 秦策, 等. 三维频率域可控源电磁反演研究[J]. 地球物理学报, 2016, 59(1):330-341.
doi: 10.6038/cjg20160128
[18] Zhao N, Wang X B, Qin C, et al. 3D frequency-domain CSEM inversion[J]. Chinese Journal of Geophysics, 2016, 59(1):3330-341.
[19] Smith J T. Conservative modeling of 3D electromagnetic fields,Part II,biconjugate gradient solution and an accelerator[J]. Geophysics, 1996, 61(5):1319-1324.
[20] Miki Y, Washizawa T. A2ILU:Auto-accelerated ILU Preconditioner for Sparse Linear Systems[J]. SIAM Journal on Scientific Computing, 2013, 35(2):A1212-A1232.
[21] Freund R W, Nachtigal N M. QMR:A quasi-minimal residual method for non-Hermitian linear systems[J]. Numerische Mathematik, 1991, 60,315-339.
[22] 王茂晓, 李胜坤. 复矩阵方程的复全局QMR算法[J]. 成都信息工程大学学报, 2020, 35(2):248-252.
[22] Wang M X, Li S K. Complex global QMR Algorithm for the complex matrix equations[J]. Journal of Chengdu University of the Information Technology, 2020, 35(2):248-252.
[23] Key K. 1D inversion of multicomponent,multifrequency marine CSEM data:Methodology and synthetic studies for resolving thin resistive layers[J]. Geophysics, 2009, 74(2):F9-F20.
[24] 王泽亚, 徐亚, 能昌信, 等. 海滨垃圾填埋场渗滤液污染土壤的复电阻率特性[J]. 环境科学研究, 2020, 33(4):1021-1027.
[24] Wang Z Y, Xu Y, Neng C X, et al. Complex resistivity properties of leachate-contaminated soil coastal landfill[J]. Research of Environmental Sciences, 2020, 33(4):1021-1027.
[25] 张振宇, 许伟伟, 邓亚平, 等. 三氯乙烯污染土壤的复电阻率特征和频谱参数研究[J]. 地学前缘, 2021, 28(5):114-124.
doi: 10.13745/j.esf.sf.2021.2.4
[25] Zhang Z Y, Xu W W, Deng Y P, et al., Complecx resistivity properties and spectral parameters of TCE contaminated soils[J]. Earth Science Frontiers, 2021, 28(5):114-124.
[26] Revil A, Coperey A, Shao Z, et al. Complex conductivity of soils[J]. Water Resources Research, 2017, 53,7121-7147.
[27] 刘豪睿, 孙亚坤, 能昌信, 等. 铬污染土壤复电阻率频散特性[J]. 物探与化探, 2010, 34(3):372-375.
[27] Liu H R, Sun Y K, Nai C X, et al. The complex dispersion properties of the chrome-contaminated soil[J]. Geophysical and Geochemical Exploration, 2010, 34(3):372-375.
[1] 蒋志强, 林超, 杨庭伟, 宁晓斌. 基于虚拟波场的可控源三维电磁法正演[J]. 物探与化探, 2024, 48(5): 1348-1358.
[2] 胡英才, 王瑞廷, 李貅. 激电效应对AMT正演的影响及其在砂岩型铀矿中的数值模拟[J]. 物探与化探, 2024, 48(4): 1006-1017.
[3] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[4] 张丽华, 潘保芝, 单刚义, 阿茹罕, 张鹏济. 基于复电阻率—核磁联测实验的三水模型新形式[J]. 物探与化探, 2023, 47(4): 1018-1023.
[5] 吴国培, 张莹莹, 赵华亮, 周钟航, 李医滨. 基于横向约束的中心回线瞬变电磁一维反演[J]. 物探与化探, 2023, 47(4): 1024-1032.
[6] 殷启春, 王元俊, 周道容, 张丽, 孙桐. 复电阻率法在安徽南陵盆地海相页岩气勘探中的应用[J]. 物探与化探, 2022, 46(3): 668-677.
[7] 赵友超, 张军, 范涛, 姚伟华, 杨洋, 孙怀凤. 地—井瞬变电磁三维响应特征分析与异常体快速定位方法研究[J]. 物探与化探, 2022, 46(2): 383-391.
[8] 田郁, 乐彪. 复杂异常体模型下的三维MT倾子正演模拟[J]. 物探与化探, 2021, 45(4): 1021-1029.
[9] 智庆全, 武军杰, 王兴春, 孙怀凤, 杨毅, 张杰, 邓晓红, 陈晓东, 杜利明. 在瞬变电磁三维正演中的应用[J]. 物探与化探, 2021, 45(4): 1037-1042.
[10] 郭楚枫, 张世晖, 刘天佑. 三维磁场有限元—无限元耦合数值模拟[J]. 物探与化探, 2021, 45(3): 726-736.
[11] 顾观文, 武晔, 石砚斌. 基于矢量有限元的大地电磁快速三维正演研究[J]. 物探与化探, 2020, 44(6): 1387-1398.
[12] 马炳镇. 起伏地形下地面瞬变电磁法三维正演数值模拟研究[J]. 物探与化探, 2018, 42(4): 777-784.
[13] 任志平, 李貅, 戚志鹏, 赵威, 智庆全, 刘磊. 地面核磁共振三维响应影响因素[J]. 物探与化探, 2017, 41(1): 92-97.
[14] 武军杰, 王兴春, 杨毅, 张杰, 邓晓红, 杨启安. 偶极TEM三分量曲线特征分析及应用试验[J]. 物探与化探, 2015, 39(5): 973-977.
[15] 向毕文, 陈儒军, 淳少恒, 姚红春, 吴宏, 刘卫强. 利用指数函数拟合去除扩频激电信号中的电磁耦合感应[J]. 物探与化探, 2015, 39(5): 1053-1058.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com