Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (3): 661-669    DOI: 10.11720/wtyht.2025.1419
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于正演约束的高密度电法半监督学习反演
李国豪1,2,3(), 吕玉增1(), 董一凡1, 于海涛2,3
1.桂林理工大学 地球科学学院,广西 桂林 541004
2.广东省建筑科学研究院集团股份有限公司,广东 广州 510500
3.广东省建设工程质量安全检测总站有限公司,广东 广州 510500
Semi-supervised learning inversion of data derived from high-resolution electrical resistivity tomography based on forward modeling constraints
LI Guo-Hao1,2,3(), LYU Yu-Zeng1(), DONG Yi-Fan1, YU Hai-Tao2,3
1. College of Earth Sciences, Guilin University of Technology, Guilin 541004, China
2. Guangdong Provincial Academy of Building Research Group Co., Ltd., Guangzhou 510500, China
3. Guangdong Construction Engineering Quality & Safety Testing Head Station Co., Ltd., Guangzhou 510500, China
全文: PDF(2787 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

基于监督的深度学习反演依赖地下介质标签进行训练,然而实测电法数据通常缺乏地下介质标签。使用模型正演生成大量合成数据进行监督学习,对于超出训练集以外的复杂数据反演又难以获得可靠的结果。本文尝试基于正演约束的半监督学习反演方法,结合标签数据和无标签数据训练,用于提高反演精度和对复杂地质结构的刻画能力。合成数据反演结果表明,该半监督学习反演方法具有较强的泛化能力。实测数据反演结果表明,相比于传统最小二乘法反演,半监督反演结果具有较好的分辨率,尤其对纵向岩性界面的刻画更接近实际情况。本文提出的半监督学习为高密度电法反演提供了一种新的思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李国豪
吕玉增
董一凡
于海涛
关键词 高密度电法半监督学习非线性反演深度学习    
Abstract

Supervised deep learning inversion relies on labels of subsurface media for training. However, the measured data from electrical resistivity tomography usually lack such labels. Supervised learning based on significant synthetic data generated through forward modeling fails to obtain reliable inversion results for complex data outside the training set. This study proposed a semi-supervised learning inversion method based on forward modeling constraints, combining with labeled and unlabeled data for training, to enhance the inversion accuracy and the capability to characterize complex geological structures. The inversion results of synthetic data demonstrate the strong generalization capability of the proposed method. The inversion results of measured data indicate that compared to conventional least-squares inversion, semi-supervised inversion provides higher resolution and particularly more accurate characterization of vertical lithological boundaries. Overall, the proposed method offers a novel approach for the inversion of the data derived from high-resolution electrical resistivity tomography.

Key wordshigh-resolution electrical resistivity tomography    semi-supervised learning    nonlinear inversion    deep learning
收稿日期: 2024-10-21      修回日期: 2025-02-26      出版日期: 2025-06-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目(42274182);广西重点研发计划(桂科AB22035045);广西有色金属隐伏矿床勘查及材料开发协同创新中心创新团队项目(GXYSXTZX2017-Ⅱ-5)
通讯作者: 吕玉增(1978-),男,博士,教授,主要从事勘探地球物理理论与应用研究工作。Email: Lyz@glut.edu.cn
作者简介: 李国豪(2000-),男,硕士研究生,从事勘探地球物理数据处理应用研究工作。Email: 2914945331@qq.com
引用本文:   
李国豪, 吕玉增, 董一凡, 于海涛. 基于正演约束的高密度电法半监督学习反演[J]. 物探与化探, 2025, 49(3): 661-669.
LI Guo-Hao, LYU Yu-Zeng, DONG Yi-Fan, YU Hai-Tao. Semi-supervised learning inversion of data derived from high-resolution electrical resistivity tomography based on forward modeling constraints. Geophysical and Geochemical Exploration, 2025, 49(3): 661-669.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1419      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I3/661
Fig.1  半监督学习反演流程
Fig.2  DualChannel模块结构
Fig.3  DualChannelUNet的反演网络架构
Fig.4  合成电法数据集电阻率模型示意
Fig.5  定量评价指标变化曲线
Fig.6  合成数据反演结果对比
Fig.7  邵东找水项目实测数据及反演剖面对比
[1] 吕玉增, 程一鸣, 卢光辉, 等. 综合物探技术在桂西沉积型铝土矿勘查中的应用[J]. 矿产与地质, 2023, 37(5):1039-1045.
[1] Lyu Y Z, Cheng Y M, Lu G H, et al. Application of comprehensive geophysical prospecting technology in the exploration of sedimentary bauxite deposits in West Guangxi[J]. Mineral Resources and Geology, 2023, 37(5):1039-1045.
[2] 张巍, 周瑜琨, 刘立岩, 等. 跨孔电阻率法在城市输水管道渗漏监测中的应用[J]. 物探与化探, 2024, 48(3):884-890.
[2] Zhang W, Zhou Y K, Liu L Y, et al. Application of the cross-borehole resistivity method in the monitoring of leakage for urban water supply pipelines[J]. Geophysical and Geochemical Exploration, 2024, 48(3):884-890.
[3] 陈学群, 李成光, 田婵娟, 等. 高密度电阻率法在咸水入侵监测中的应用[J]. 物探与化探, 2021, 45(5):1347-1353.
[3] Chen X Q, Li C G, Tian C J, et al. The application of high density electrical resistivity method to monitoring saltwater intrusion[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1347-1353.
[4] 姜国庆, 郝社锋, 喻永祥, 等. 基于三维电阻率反演的滑坡地质灾害调查——以无锡市雪浪山景区滑坡为例[J]. 物探与化探, 2024, 48(6):1720-1729.
[4] Jiang G Q, Hao S F, Yu Y X, et al. Landslide survey based on three-dimensional resistivity inversion:A case study of the Xuelang Mountain scenic spot,Wuxi,China[J]. Geophysical and Geochemical Exploration, 2024, 48(6):1720-1729.
[5] 戴田宇, 谢尚平. 高密度电阻率法在葬墓考古的应用[J]. 地球物理学进展, 2015, 30(6):2885-2891.
[5] Dai T Y, Xie S P. Application of resistivity technigue in the relic archaeology[J]. Progress in Geophysics, 2015, 30(6):2885-2891.
[6] Monteiro S F A, Sultan S A, Represas P, et al. Joint inversion of gravity and geoelectrical data for groundwater and structural investigation:Application to the northwestern part of Sinai,Egypt[J]. Geophysical Journal International, 2006, 165(3):705-718.
[7] 程勃, 丁彦礼, 徐志锋. 统计学建模法在面积性高密度电阻率数据反演中的应用[J]. 桂林理工大学学报, 2016, 36(3):452-457.
[7] Cheng B, Ding Y L, Xu Z F. Statistic modeling 2D inversion application in parallel resistivity survey lines[J]. Journal of Guilin University of Technology, 2016, 36(3):452-457.
[8] 赵涛, 于师建. 基于GA-BP神经网络算法的高密度电法非线性反演[J]. 煤田地质与勘探, 2017, 45(2):147-151.
[8] Zhao T, Yu S J. GA-BP neural network algorithm-based nonlinear inversion for high density resistivity method[J]. Coal Geology & Exploration, 2017, 45(2):147-151.
[9] 郭谦. 基于先验约束的电阻率法探测深度学习反演方法[D]. 济南: 山东大学, 2019.
[9] Guo Q. Learning inversion method of resistivity detection depth based on prior constraint[D]. Jinan: Shandong University, 2019.
[10] 刘征宇, 庞永昊, 张凤凯, 等. 基于多尺度边缘特征的深度学习电阻率反演方法[J]. 岩土力学, 2023, 44(11):3299-3306.
[10] Liu Z Y, Pang Y H, Zhang F K, et al. Deep learning resistivity inversion method based on multi-scale edge features[J]. Rock and Soil Mechanics, 2023, 44(11):3299-3306.
[11] 宋磊, 印兴耀, 宗兆云, 等. 基于先验约束的深度学习地震波阻抗反演方法[J]. 石油地球物理勘探, 2021, 56(4):716-727,670.
[11] Song L, Yin X Y, Zong Z Y, et al. Deep learning seismic impedance inversion based on prior constraints[J]. Oil Geophysical Prospecting, 2021, 56(4):716-727,670.
[12] 韩宏伟, 刘浩杰, 桑文镜, 等. 基于半监督学习的井震联合储层横向孔隙度预测方法[J]. 地球物理学报, 2022, 65(10):4073-4086.
[12] Han H W, Liu H J, Sang W J, et al. Seismic and well logs integration for reservoir lateral porosity prediction based on semi-supervised learning[J]. Chinese Journal of Geophysics, 2022, 65(10):4073-4086.
[13] 罗仁昱, 陈继锋, 尹欣欣. 机器学习在地震事件自动检测中的应用综述[J]. 地球物理学进展, 2021, 36(3):923-932.
[13] Luo R Y, Chen J F, Yin X X. Review of the applications of machine learning in automatic detection of seismic events[J]. Progress in Geophysics, 2021, 36(3):923-932.
[14] Laine S, Aila T M. Temporal ensembling for semi-supervised learning[EB/OL].2016:1610.02242.
[15] Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham: Springer International Publishing, 2015.
[16] 高好天, 孙宁娜, 孙可奕, 等. DnCNN和U-Net对地震随机噪声压制的对比分析[J]. 地球物理学进展, 2021, 36(6):2441-2453.
[16] Gao H T, Sun N N, Sun K Y, et al. Comparative analysis of DnCNN and U-Net on suppression of seismic random noise[J]. Progress in Geophysics, 2021, 36(6):2441-2453.
[17] Lou A G, Guan S Y, Loew M H. DC-UNet:Rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation[C]// Medical Imaging 2021:Image Processing.February 15-20, 2021. Online Only,USA.SPIE,2021:98.
[18] Kingma D P, Ba J, Hammad M M. Adam: A method for stochastic optimization[EB/OL].2014:1412.6980.
[19] Peng C, Gou W, Liu G. Ray-tracing-based input data selection RTM-A target oriented approach for clearer subsalt image[C]// Proceedings.June 1-4,2015.Madrid,Spain.EAGE Publications BV, 2015.
[1] 张猛. 地震资料处理中油井抽油机噪声干扰智能检测与压制方法[J]. 物探与化探, 2025, 49(2): 378-384.
[2] 葛大明. 基于深度学习的二维斜率层析反演模型误差校正方法[J]. 物探与化探, 2025, 49(2): 385-393.
[3] 李博, 李长伟, 罗润林, 吕玉增, 王占. 基于VMD-LSTM对大地电磁信号进行噪声检测和预测重构[J]. 物探与化探, 2025, 49(1): 100-117.
[4] 单博, 邢宇鑫, 张繁昌, 李志伟, 陈默. 基于二次编解码网络的适应性叠前反演方法[J]. 物探与化探, 2025, 49(1): 158-165.
[5] 赵丽芳, 喻思羽, 李少华. 基于深度学习的变差函数自动拟合方法研究[J]. 物探与化探, 2024, 48(5): 1359-1367.
[6] 夏时斌, 廖国忠, 邓国仕, 杨剑, 李富. 高密度电法和音频大地电磁测深法在西南岩溶地区地下水勘探中的应用[J]. 物探与化探, 2024, 48(3): 651-659.
[7] 姚禹, 张志厚. 基于改进DenseNet的大地电磁智能反演[J]. 物探与化探, 2024, 48(3): 759-767.
[8] 庞永昊, 沈昭昂, 常志喜, 李广场, 陈美, 谢志伟, 王威. 基于非对称设计的高密度电法观测装置研究[J]. 物探与化探, 2024, 48(3): 786-793.
[9] 杨凯, 刘诚, 贺景龙, 李含, 姚川. 基于人工神经网络的大地电磁时序分类研究[J]. 物探与化探, 2024, 48(2): 498-507.
[10] 张阳阳, 杜威, 王芝水, 缪旭煌, 张翔. 基于Lévay飞行的粒子群算法在大地电磁反演中的应用[J]. 物探与化探, 2023, 47(4): 986-993.
[11] 周建兵, 罗锐恒, 贺昌坤, 潘晓东, 张绍敏, 彭聪. 文山小河尾水库岩溶含水渗漏通道的地球物理新证据[J]. 物探与化探, 2023, 47(3): 707-717.
[12] 覃剑文, 姜晓腾, 谢贵城, 孙汉武, 何流, 孙怀凤. 基于高密度电法的城市复杂环境岩溶探查研究——以贵港市北环新村为例[J]. 物探与化探, 2023, 47(2): 530-539.
[13] 李沐思, 陈丽蓉, 谢飞, 谷兰丁, 吴晓栋, 马芬, 尹兆峰. 面向地球化学异常识别的深度学习算法对比研究[J]. 物探与化探, 2023, 47(1): 179-189.
[14] 杨凯, 唐卫东, 刘诚, 贺景龙, 姚川. 基于LSTM循环神经网络的大地电磁方波噪声抑制[J]. 物探与化探, 2022, 46(4): 925-933.
[15] 王强, 田野, 刘欢, 朱春光, 白超琨, 郝森. 综合物探方法在煤矿采空区探测中的应用[J]. 物探与化探, 2022, 46(2): 531-536.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com