Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (3): 746-753    DOI: 10.11720/wtyht.2025.1466
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
西南山岭强震区特长深埋隧道的综合物探应用
邬远明1(), 邢泽峰2, 鲁光银2
1.湖南省交通规划勘察设计院有限公司, 湖南 长沙 410219
2.中南大学 地球科学与信息物理学院,湖南 长沙 410083
Application of integrated geophysical exploration in an extra-long deep tunnel in the seismically active mountainous region, Southwest China
WU Yuan-Ming1(), XING Ze-Feng2, LU Guang-Yin2
1. Hunan Provincial Communications Planning, Survey & Design Institute Co., Ltd., Changsha 410219, China
2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
全文: PDF(3080 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

西部山区的大风顶隧道属深埋特长隧道,区域内地震活动性较强,地质及水文地质条件极其复杂。此隧道勘查工作的重难点在于复杂地质条件与不良勘探环境增加了勘查难度,同时需精准推断隧址区岩体破碎程度及富水性特征,以制定有效的防震措施。因此,在利用地质资料进行区域岩性的初步划分基础上,开展了以音频大地电磁测深为主结合高密度电法的综合物探。结果表明,综合物探有效揭示了隧址区整体视电阻率变化和浅部详细的视电阻率分布,尤其是隧道洞口附近电场分布特征,从而推断出隧址区岩体的破碎程度与富水性特征。同时通过钻井资料有效验证了物探方法的有效性,表明使用综合物探方法可以为强震区特长深埋隧道勘查和建设提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邬远明
邢泽峰
鲁光银
关键词 强震区特长深埋隧道岩性划分综合物探地震活动影响    
Abstract

The Dafengding tunnel is an extra-long deep tunnel in the seismically active mountainous region characterized by exceptionally complex geologic and hydrogeologic conditions in Southwest China. The primary challenges in the tunnel investigation arise from complex geological conditions and unfavorable exploration environments. Moreover, developing effective seismic mitigation measures necessitates precisely determining the fragmentation and water-bearing characteristics of rock masses at the tunnel site. Hence, based on the initial classification of regional lithologies using geologic data, this study conducted integrated geophysical exploration at the tunnel site by combining the audio-frequency magnetotelluric method with high-resolution electrical resistivity tomography. The results indicate that the integrated geophysical exploration effectively revealed the overall variation in apparent resistivity at the tunnel site and the shallow apparent resistivity distribution, particularly the characteristics of the electric field near the tunnel portal. These findings enabled the inference of the fragmentation and water-bearing characteristics of rock masses at the tunnel site. Moreover, the borehole data effectively validated the effectiveness of the integrated geophysical exploration, demonstrating that the integrated geophysical exploration can provide a valuable reference for the investigation and construction of extra-long deep tunnels in seismically active regions.

Key wordsseismically active region    extra-long deep tunnel    lithologic classification    integrated geophysical exploration    impact of seismic activity
收稿日期: 2024-12-04      修回日期: 2025-03-19      出版日期: 2025-06-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目(41974148);国家重点研发计划项目(2023YFF0718000);中国中铁股份有限公司科技研究开发计划项目(2022-重大专项-07)
作者简介: 邬远明(1982-),男,工程师,硕士,主要从事电法勘探工作。Email: 156443024@qq.com
引用本文:   
邬远明, 邢泽峰, 鲁光银. 西南山岭强震区特长深埋隧道的综合物探应用[J]. 物探与化探, 2025, 49(3): 746-753.
WU Yuan-Ming, XING Ze-Feng, LU Guang-Yin. Application of integrated geophysical exploration in an extra-long deep tunnel in the seismically active mountainous region, Southwest China. Geophysical and Geochemical Exploration, 2025, 49(3): 746-753.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1466      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I3/746
岩性 ρ/(Ω·m) 岩性 ρ/(Ω·m)
灰岩 500~6000 白云岩 200~3000
砂岩 100~2000 碳质页岩 100~2000
粉砂岩 50~1000 玄武岩 1500~8000
Table 1  隧址区矿物电阻率范围统计
Fig.1  隧址区地质构造及物探测线示意
地质
背景
推断解释 ρs/
(Ω·m)
lg[ρs/
(Ω·m)]
围岩
级别
碳酸盐岩地层 极破碎、富水溶洞 ≤50 ≤1.7 V
风化破碎、溶蚀发育区 50~2200 1.7~2.3 IV
弱风化带岩石 200~700 2.3~2.8 III
微风化、完整坚硬岩石 ≥700 ≥2.8 II
碎屑岩地层 极破碎、富水岩石 ≤50 ≤1.7 V
破碎、富水性强、强风化带 50~200 1.7~2.3 IV
较破碎、富水性中、弱风化带 200~500 2.3~2.7 III
富水性弱、微风化带 ≥500 ≥2.7 II
火山岩地层 岩石破碎、极软弱或
富水岩体
≤300 ≤2.5 V
破碎、软弱或含水岩体 300~1000 2.5~3 IV-V
较破碎、富水性中到弱 1000~2000 3~3.3 IV
岩体较完整、富水性弱 ≥2000 ≥3.3 III
Table 2  各岩类解释划分标准
Fig.2  大风顶隧道左线AMT视电阻率断面(a)岩性异常分类剖面(b)
Fig.3  大风顶隧道左线ZK68+507处WS-037高密度电法视电阻率断面
Fig.4  大风顶隧道左线ZK68+907处WS-038高密度电法视电阻率断面
Fig.5  大风顶隧道左线ZK69+627处WS-039高密度电法视电阻率断面
Fig.6  大风顶隧道左线ZK69+977处WS-040高密度电法视电阻率断面
Fig.7  大风顶隧道左线ZK70+712处WS-041高密度电法视电阻率断面
[1] 向鹏成, 杨斯迈, 袁永奇. 西部区域重大交通基础设施互联互通协同发展的挑战与推进路径[J]. 重庆大学学报:社会科学版, 2024, 30(6):26-40.
[1] Xiang P C, Yang S M, Yuan Y Q. Challenges and paths to coordinated development of regional mega-transportation infrastructure interconnection in the western region[J]. Journal of Chongqing University:Social Science Edition, 2024, 30(6):26-40.
[2] 刘继国, 崔庆龙, 李丹妮, 等. 截至2023年底中国10 km以上特长公路隧道统计与分析[J]. 隧道建设, 2024, 44(1):189-198.
[2] Liu J G, Cui Q L, Li D N, et al. Statistics and analysis of super-long highway tunnels over 10 km in China by the end of 2023[J]. Tunnel Construction, 2024, 44(1):189-198.
[3] 代绍述. 西部山区深埋特长公路隧道综合勘查技术研究[J]. 灾害学, 2019, 34(S1):91-95.
[3] Dai S S. Research on comprehensive survey technology of deep-buried and extra-long highway tunnels in western mountainous areas[J]. Journal of Catastrophology, 2019, 34(S1):91-95.
[4] 陈子全, 寇昊, 杨文波, 等. 我国西南部山区隧道施工期支护结构力学行为特征案例分析[J]. 隧道建设, 2020, 40(6):800-812.
[4] Chen Z Q, Kou H, Yang W B, et al. Cases analysis of mechanical behavior characteristics of tunnel supporting structure in mountainous areas in southwest China[J]. Tunnel Construction, 2020, 40(6):800-812.
[5] 李凯, 侯秋平, 邹杰, 等. 综合物探方法在复杂地质条件下公路隧道勘查中的应用[J]. 工程地球物理学报, 2024, 21(5):820-828.
[5] Li K, Hou Q P, Zou J, et al. Application of comprehensive geophysical methods in highway tunnel investigation under complex geological conditions[J]. Chinese Journal of Engineering Geophysics, 2024, 21(5):820-828.
[6] 舒森, 王树栋, 李广, 等. 瞬变电磁法指导复杂地质隧道超前水平钻探应用[J]. 物探与化探, 2018, 42(6):1311-1316.
[6] Shu S, Wang S D, Li G, et al. The application of TEM to guiding advance exploration drilling of complex geological tunnel[J]. Geophysical and Geochemical Exploration, 2018, 42(6):1311-1316.
[7] 张文鑫, 李勇, 李斌, 等. 西部山区公路隧道音频大地电磁正演研究[J]. 物探化探计算技术, 2018, 40(6):780-788.
[7] Zhang W X, Li Y, Li B, et al. Study on audio magnetotelluric forward of highway tunnel in mountainous area of western China[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2018, 40(6):780-788.
[8] 许广春. 广域电磁法在深埋隧道勘查中的应用研究[J]. 铁道工程学报, 2020, 37(2):1-5,16.
[8] Xu G C. Application research on the wide field electromagnetic method for deep-buried tunnel investigation[J]. Journal of Railway Engineering Society, 2020, 37(2):1-5,16.
[9] 周竹生, 丰赟. 隧道勘查中的综合物探方法[J]. 地球物理学进展, 2011, 26(2):724-731.
[9] Zhou Z S, Feng Y. The comprehensive geophysical survey in tunnel exploration[J]. Progress in Geophysics, 2011, 26(2):724-731.
[10] 黄小年, 郭高峰, 张本涛. 综合物探技术在隧道勘查中的应用研究[J]. 公路, 2022, 67(5):22-25.
[10] Huang X N, Guo G F, Zhang B T. Application and study of comprehensive geophysical prospecting methods in the geotechnical investigation of tunnel[J]. Highway, 2022, 67(5):22-25.
[11] 何俊飞. 综合物探在新兴都斛铜矿床勘查中的应用[J]. 物探与化探, 2024, 48(2):375-381.
[11] He J F. Application of comprehensive geophysical prospecting in exploration of the Duhu copper deposit in Xinxing County[J]. Geophysical and Geochemical Exploration, 2024, 48(2):375-381.
[12] 康耀, 杜安鹏. 综合物探技术在云南龙堡隧道地层勘查中的应用研究[J]. 工程地球物理学报, 2023, 20(4):446-453.
[12] Kang Y, Du A P. Research on the application of comprehensive geophysical techniques in stratigraphic survey of Longbao tunnel in Yunnan province[J]. Chinese Journal of Engineering Geophysics, 2023, 20(4):446-453.
[13] 程小勇. 基于水文地质综合勘查的隧道导水特性研究[J]. 地下空间与工程学报, 2024, 20(4):1345-1356.
doi: 10.20174/j.JUSE.2024.04.28
[13] Cheng X Y. Study on water diversion characteristics of tunnel based on hydrogeological comprehensive investigation[J]. Chinese Journal of Underground Space and Engineering, 2024, 20(4):1345-1356.
doi: 10.20174/j.JUSE.2024.04.28
[14] 阳映, 闫清华, 衣骏杰, 等. 综合物探技术在北京延庆松山隧道勘查中的应用[J]. 地质与勘探, 2021, 57(6):1374-1382.
[14] Yang Y, Yan Q H, Yi J J, et al. Application of integrated geophysical exploration technology to the survey of the Songshan tunnel in Yanqing,Beijing[J]. Geology and Exploration, 2021, 57(6):1374-1382.
[15] 陈楠, 赵永辉, 王海, 等. 长大深埋隧道勘查中的综合地球物理方法应用研究[J]. 地球物理学进展, 2024, 39(6):2420-2431.
doi: 10.6038/pg2024II0089
[15] Chen N, Zhao Y H, Wang H, et al. Application research of integrated geophysical methods in long and deeply-buried tunnel exploration[J]. Progress in Geophysics, 2024, 39(6):2420-2431.
doi: 10.6038/pg2024II0089
[16] 王品丰, 康世海, 孔凡涛, 等. 音频大地电磁在长大深埋隧道勘探中的研究与应用[J]. 物探化探计算技术, 2018, 40(1):95-101.
[16] Wang P F, Kang S H, Kong F T, et al. Research and application of audio magnetotelluric in deeply-buried tunnel exploration[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2018, 40(1):95-101.
[17] 刘波, 祁程, 张伟, 等. 吊脚楼隧道断裂构造识别与定位:来自音频大地电磁测深的证据[J]. 地质论评, 2021, 67(S1):3-4.
[17] Liu B, Qi C, Zhang W, et al. Identification and location of fracture sturcture in Diaojiaolou tunnel:Evidence from audio-frequency magnetotelluric sounding AMT survey[J]. Geological Review, 2021, 67(S1):3-4.
[18] 肖洋, 于维刚, 何宇. 高密度电阻率法在余凯高速公路岩溶隧道浅埋段地质探测中的应用研究[J]. 现代隧道技术, 2019, 56(S2):700-705.
[18] Xiao Y, Yu W G, He Y. Study on the application of high density resistivity method in geological exploration of shallow buried section of Yukai Expressway Karst tunnel in Yu Kai Expressway[J]. Modern Tunnelling Technology, 2019, 56(S2):700-705.
[19] 范祥泰, 张志厚, 苏建坤, 等. 改进电测深法探测山区深埋隧道隐伏构造[J]. 物探与化探, 2021, 45(3):793-799.
[19] Fan X T, Zhang Z H, Su J K, et al. Improved electric sounding method for detecting concealed structures in deep-buried tunnels in mountainous areas[J]. Geophysical and Geochemical Exploration, 2021, 45(3):793-799.
[20] 夏时斌, 廖国忠, 邓国仕, 等. 高密度电法和音频大地电磁测深法在西南岩溶地区地下水勘探中的应用[J]. 物探与化探, 2024, 48(3):651-659.
[20] Xia S B, Liao G Z, Deng G S, et al. Application of high-density electrical resistivity tomography and audio magnetotellurics for groundwater exploration in the karst area in southwestern China[J]. Geophysical and Geochemical Exploration, 2024, 48(3):651-659.
[21] 叶益信, 杜家明, 薛海军, 等. 高密度电法与音频大地电磁法在城市输水隧洞勘查中的应用[J]. 地球科学与环境学报, 2020, 42(6):767-775.
[21] Ye Y X, Du J M, Xue H J, et al. Application of multi-electrode resistivity method and audio-frequency magnetotelluric method in the investigation of urban water tunnel[J]. Journal of Earth Sciences and Environment, 2020, 42(6):767-775.
[1] 游越新, 邓居智, 陈辉, 余辉, 高科宁. 综合物探方法在云南澜沧老厂多金属矿区深部找矿中的应用[J]. 物探与化探, 2023, 47(3): 638-647.
[2] 张志, 徐洪苗, 钱家忠, 谢杰, 陈皓龙, 朱紫祥. 综合物探方法在矿泉水勘查中的应用——以泾县榔桥地区为例[J]. 物探与化探, 2023, 47(3): 690-699.
[3] 王军成, 赵振国, 高士银, 罗传根, 李琳, 徐明钻, 李勇, 袁国境. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2): 321-330.
[4] 罗卫锋, 胡志方, 甘伏平, 张庆玉, 康海霞, 张云枭. 南方碳酸盐岩地区页岩气钻探井位选址中的综合物探方法应用[J]. 物探与化探, 2022, 46(4): 824-829.
[5] 冯军, 蒋文, 张征. 西北某石英脉型金矿综合物探特征及定量解释实例[J]. 物探与化探, 2022, 46(3): 661-667.
[6] 蔡盛. 张吉怀铁路隧道超前预报技术应用研究[J]. 物探与化探, 2021, 45(5): 1275-1280.
[7] 余永鹏, 闫照涛, 毛兴军, 杨彦成, 马永祥, 黄鹏程, 陆爱国, 张广兵. 巨厚新生界覆盖区煤炭勘查中的电震综合方法应用[J]. 物探与化探, 2021, 45(5): 1231-1238.
[8] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[9] 李谭伟, 李振兴, 葛延明, 邬远明. 综合物探方法在株洲湘江大桥勘察中的应用[J]. 物探与化探, 2021, 45(3): 785-792.
[10] 陈晓晶, 虎新军, 李宁生, 仵阳, 程国强, 倪萍, 曹园园, 卜进兵. 银川盆地东缘地热成藏模式探讨[J]. 物探与化探, 2021, 45(3): 583-589.
[11] 孟庆旺. 综合物探方法在嘉祥县青山省级地质公园溶洞勘察中的应用效果[J]. 物探与化探, 2020, 44(6): 1464-1469.
[12] 孙海川, 刘永亮, 邵程龙. 综合物探在海石湾地区地热勘查中的应用[J]. 物探与化探, 2019, 43(2): 290-297.
[13] 邓中俊, 杨玉波, 姚成林, 贾永梅, 李春风. 综合物探在地面塌陷区探测中的应用[J]. 物探与化探, 2019, 43(2): 441-448.
[14] 李玉录, 邢利娟, 拜占红, 刘志华, 王震. 综合物探方法在青海省跃进山铁矿勘查中的应用[J]. 物探与化探, 2018, 42(5): 889-895.
[15] 白亚东, 安百州, 李宁生, 周永康. 综合物探技术在宁夏六盘山盐类矿产勘查中的应用[J]. 物探与化探, 2017, 41(4): 611-618.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com