Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (3): 727-733    DOI: 10.11720/wtyht.2025.1469
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
多层泡棉复合吸波材料在探地雷达天线设计中的应用
殷岳萌1(), 王成浩1, 李少龙1, 张照1, 徐飞2
1.中国电波传播研究所,山东 青岛 266107
2.石家庄铁道大学,河北 石家庄 050043
Application study of multi-layer foam composite microwave-absorbing materials in GPR antenna design
YIN Yue-Meng1(), WANG Cheng-Hao1, LI Shao-Long1, ZHANG-Zhao 1, XU-Fei 2
1. China Research Institute of Radiowave Propagation,Qingdao 266107,China
2. Shijiazhuang Tiedao University,Shijiazhuang 050043,China
全文: PDF(3232 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

本文旨在进行吸波材料在时域脉冲探地雷达天线设计中的应用研究。首先分析了电磁波在吸波材料介质界面及内部的传播机理,在理论分析的基础上采用多层泡棉复合吸波材料对天线进行不同方式的加载,使用CST电磁仿真软件对不同加载方式的天线进行了波形保真度、天线增益、端口驻波比等参数的仿真比较,并结合实际应用场景进行了发射天线、接收天线、分层大地及地下目标物系统建模仿真,通过比较天线在不同加载方式下目标回波信号特点,得出了多层泡棉复合类吸波材料在探地雷达天线中的最佳加载方式。按照本文提出的加载方式进行了带屏蔽壳体的平板型偶极天线设计与加工,并搭载LTD-2600探地雷达进行了贴地与架空情况下的实地测试,测试图像可明显看出地下5.6 m处地层异常信号,可为探地雷达天线设计及工程应用提供有效指导。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
殷岳萌
王成浩
李少龙
张照
徐飞
关键词 探地雷达天线设计吸波材料多层组合加载阻抗匹配    
Abstract

This study focuses on the application of microwave-absorbing materials in the design of time-domain pulsed ground-penetrating radar(GPR) antennae.First,this study analyzed the propagation mechanisms of electromagnetic waves inside and at the medium interface of microwave-absorbing materials.Second,this study applied multi-layer foam composite microwave-absorbing materials to antennae in various loading configurations.Third,based on the CST electromagnetic simulation software,this study compared parameters like waveform fidelity,antenna gain,and voltage standing wave ratio(VSWR) for antennae with different loading configurations.Fourth,this study performed systematic modeling and simulation for the transmitting antenna,receiving antenna,stratified ground,and subsurface targets in combination with a real-world application scenario.By examining the characteristics of the target echo signal under various loading configurations for antennae,this study determined the optimal loading configuration of multi-layer foam composite microwave-absorbing materials for GPR antennae.Using the optimal loading configuration, this study designed and fabricated a flat dipole antenna with a shielding shell.Finally,this study conducted field tests using the LTD-2600 GPR with this flat dipole antenna on the ground surface and at an elevated position,clearly revealing abnormal stratigraphic signals at a depth of 5.6 m.Therefore,this study can effectively guide the design and engineering applications of GPR antennae.

Key wordsground-penetrating radar(GPR)    antenna design    microwave-absorbing material    multi-layer combination loading    impedance matching
收稿日期: 2024-12-15      修回日期: 2025-03-21      出版日期: 2025-06-20
ZTFLH:  P631.3  
基金资助:中国电波传播研究所稳定支持科研经费资助项目(A132303219)
作者简介: 殷岳萌(1986-),男,汉族,2010年5月毕业于西北工业大学信号与信息处理专业,硕士,高级工程师,LTD系列探地雷达技术带头人,长期从事探地雷达及工程装备技术研究工作。Email:cecilia768@163.com
引用本文:   
殷岳萌, 王成浩, 李少龙, 张照, 徐飞. 多层泡棉复合吸波材料在探地雷达天线设计中的应用[J]. 物探与化探, 2025, 49(3): 727-733.
YIN Yue-Meng, WANG Cheng-Hao, LI Shao-Long, ZHANG-Zhao , XU-Fei . Application study of multi-layer foam composite microwave-absorbing materials in GPR antenna design. Geophysical and Geochemical Exploration, 2025, 49(3): 727-733.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1469      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I3/727
Fig.1  多层界面反射及衰减原理示意
Fig.2  仿真模型示意
Fig.3  实测吸波材料电磁参数曲线
Fig.4  吸波材料排布方式示意
Fig.5  端口驻波比仿真曲线
Fig.6  增益仿真曲线
Fig.7  天线前方1.5 m处电场强度曲线
Fig.8  接收天线端口电压(系统仿真)
Fig.9  天线测试照片
Fig.10  地下目标测试图像
[1] 刘顺华, 刘军民, 董星龙, 等. 电磁波屏蔽及吸波材料[M]. 2版. 北京: 化学工业出版社, 2014.
[1] Liu S H, Liu J M, Dong X L, et al. Electromagnetic wave shielding and absorbing materials[M]. 2nd ed. Beijing: Chemical Industry Press, 2014.
[2] 戴维M. 波扎.微波工程[M].第三版. 北京: 电子工业出版社,2007:18-31.
[2] Pozar D M. Microwave engineering[M]. 3rd ed. Beijing: Publishing House of Electronics Industry,2007:18-31.
[3] 席嘉彬. 高性能碳基电磁屏蔽及吸波材料的研究[D]. 杭州: 浙江大学, 2018.
[3] Xi J B. Study on high performance carbon-based electromagnetic shielding and absorbing materials[D]. Hangzhou: Zhejiang University, 2018.
[4] 张家鸣. 提高地质雷达隧道衬砌质量检测效果的几点措施[J]. 隧道建设, 2014, 34(7):691-695.
[4] Zhang J M. Measures to improve effect tunnel lining testing by means of ground penetrating radar[J]. Tunnel Construction, 2014, 34(7):691-695.
[5] 雷林源. 探地雷达应用中的几个基本问题[J]. 物探与化探, 1998, 22(6):408-414.
[5] Lei L Y. Some basic problems in the application of ground-penetration radar[J]. Geophysical and Geochemical Exploration, 1998, 22(6):408-414.
[6] 李静, 曾昭发, 黄玲, 等. 三维探地雷达数值模拟中UPML边界研究[J]. 物探化探计算技术, 2010, 32(1):6-12,117.
[6] Li J, Zeng Z F, Huang L, et al. Study of UPML boundary for three dimensional GPR simulation[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2010, 32(1):6-12,117.
[7] 尹达, 辛国亮, 孙学超, 等. 实时三维探地雷达关键技术的设计与实现[J]. 物探与化探, 2024, 48(1):194-200.
[7] Yin D, Xin G L, Sun X C, et al. Design and implementation of key technologies of real-time 3D ground penetrating radar[J]. Geophysical and Geochemical Exploration, 2024, 48(1) :194-200.
[8] 姜婷婷. 探地雷达系统天线的仿真设计[D]. 成都: 电子科技大学, 2019.
[8] Jiang T T. Simulation design of antenna for ground penetrating radar system[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
[9] 张小博, 白大为, 高保屯, 等. 一种低频探地雷达天线屏蔽装置实验研究[J]. 物探与化探, 2017, 41(6):1255-1261.
[9] Zhang X B, Bai D W, Gao B T, et al. Experimental research on a shielding device of low frequency ground penetrating radar antenna[J]. Geophysical and Geochemical Exploration, 2017, 41(6):1255-1261.
[10] 程昌彦. 冲击型探地雷达的设计与研究[D]. 荆州: 长江大学, 2017.
[10] Cheng C Y. Design and research of impact ground penetrating radar[D]. Jingzhou: Yangtze University, 2017.
[11] 侯志星. 地质雷达超前探测在煤矿的应用[J]. 矿业装备, 2024(2):8-10.
[11] Hou Z X. Application of geological radar advanced detection in coal mine[J]. Mining Equipment, 2024(2):8-10.
[12] 刘立业, 粟毅, 毛钧杰. 具有屏蔽腔和吸波材料的探地雷达天线的FDTD分析[J]. 电波科学学报, 2006, 21(3):422-427.
[12] Liu L Y, Su Y, Mao J J. FDTD analysis of ground penetrating radar antennas with shields and absorbers[J]. Chinese Journal of Radio Science, 2006, 21(3):422-427.
[13] 王友成, 张锋, 纪奕才, 等. 探地雷达阻性加载天线的应用研究[J]. 电波科学学报, 2016, 31(3):516-521.
[13] Wang Y C, Zhang F, Ji Y C, et al. Analysis on resistive loaded antenna for GPR application[J]. Chinese Journal of Radio Science, 2016, 31(3):516-521.
[14] 尹德, 叶盛波, 刘晋伟, 等. 一种用于高速公路探地雷达的新型时域超宽带TEM喇叭天线[J]. 雷达学报, 2017, 6(6):611-618.
[14] Yin D, Ye S B, Liu J W, et al. Novel time-domain Ultral-wide band TEM Horn antenna for highway GPR applications[J]. Journal of Radars, 2017, 6(6) :611-618.
[15] 杨睿, 薛亚东, 杨健. 雷达探测隧道壁后空洞的现场验证及空洞影响分析[J]. 隧道建设, 2017, 37(2):185-191.
[15] Yang R, Xue Y D, Yang J. In-situ verification of voids behind tunnel lining detected by ground penetrating radar and numerical analysis of influence of voids on tunnel structure[J]. Tunnel Construction, 2017, 37(2):185-191.
[16] 祁飞翔. 用于探地雷达的超宽带天线研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
[16] Qi F X. Research on ultra-wideband antenna for ground penetrating radar[D]. Harbin: Harbin Institute of Technology, 2021.
[17] 朱家松, 雷占占, 罗享寰. 面向基础设施的三维探地雷达属性成像及信息可视化研究[J]. 隧道建设:中英文, 2023, 43(10):1702-1711.
[17] Zhu J S, Lei Z Z, Luo X H. Three-dimensional ground penetrating radar attribute imaging and information visualization for urban infrastructure[J]. Tunnel Construction, 2023, 43(10):1702-1711.
[18] 钟世航, 孙宏志, 王荣, 等. 隧道掌子面前方地质预报的进展[J]. 隧道建设, 2007, 27(4):7-11.
[18] Zhong S H, Sun H Z, Wang R, et al. Progress of geology forecasting ahead of tunnel face by means of geophysical technology[J]. Tunnel Construction, 2007, 27(4):7-11.
[1] 郑伟, 田仁飞, 高雨含, 武斌. 最小均值交叉熵的时频峰值滤波在探地雷达信号去噪中的应用[J]. 物探与化探, 2025, 49(2): 404-410.
[2] 周鑫, 王洪华, 王欲成, 吴祺铭, 王浩林, 刘洪瑞. 基于共偏移距GPR信号包络和三维速度谱分析的介质电磁波速度估计方法[J]. 物探与化探, 2024, 48(6): 1693-1701.
[3] 杨浩, 邹杰, 程丹丹, 于景兰. 探地雷达在临海市古长城内部结构检测中的应用分析[J]. 物探与化探, 2024, 48(6): 1741-1746.
[4] 邵泉杰, 孙灵芝. 基于EMD和KL变换的时空联合探地雷达杂波抑制[J]. 物探与化探, 2024, 48(2): 508-513.
[5] 尹达, 辛国亮, 孙学超, 张友源, 张其道. 实时三维探地雷达关键技术的设计与实现[J]. 物探与化探, 2024, 48(1): 194-200.
[6] 席宇何, 王洪华, 王欲成, 吴祺铭. 基于速度移动窗的最小熵法在GPR逆时偏移中的应用[J]. 物探与化探, 2023, 47(5): 1250-1260.
[7] 吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
[8] 曾波, 刘硕, 杨军, 冯德山, 袁忠明, 柳杰, 王珣. 地表起伏对地下管线GPR探测的影响[J]. 物探与化探, 2023, 47(4): 1064-1070.
[9] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[10] 徐立, 冯温雅, 姜彦南, 王娇, 朱四新, 覃紫馨, 李沁璘, 张世田. 基于行列方差方法的探地雷达道路数据感兴趣区域自动提取技术[J]. 物探与化探, 2023, 47(3): 804-809.
[11] 冯温雅, 程丹丹, 王成浩, 程星. 基于探地雷达等效采样的时变零偏实时校正方法[J]. 物探与化探, 2023, 47(2): 372-376.
[12] 周东, 刘毛毛, 刘宗辉, 刘保东. 基于瞬时相位余弦的探地雷达多层路面自动检测[J]. 物探与化探, 2022, 46(4): 961-967.
[13] 张斯薇, 吴荣新, 韩子傲, 吴海波. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2): 496-501.
[14] 蔡连初, 缪念有. 探地雷达宽角反射图形拟合方法[J]. 物探与化探, 2021, 45(1): 239-244.
[15] 韩佳明, 仲鑫, 景帅, 刘平. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6): 1476-1481.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com