Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (3): 559-568    DOI: 10.11720/wtyht.2025.1501
  地质调查资源勘查 本期目录 | 过刊浏览 | 高级检索 |
基于大地电磁的南宫地热田地热资源赋存特征
卢星辰1,2(), 邢倩1(), 许勇2, 吕国森3, 陈祥忠4, 王瑞兴4, 黄申硕4
1.中国石化集团新星石油有限责任公司,北京 100083
2.中石化绿源地热能开发有限公司,河北 雄安 071800
3.中国地质大学(武汉) 环境学院,湖北 武汉 430074
4.北京桔灯地质勘探技术有限公司,北京 102299
Exploring the occurrence characteristics of geothermal resources in the Nangong geothermal field based on the magnetotelluric method
LU Xing-Chen1,2(), XING Qian1(), XU Yong2, LYU Guo-Sen3, CHEN Xiang-Zhong4, WANG Rui-Xing4, HUANG Shen-Shuo4
1. Sinopec Star Petroleum Co.,Ltd.,Beijing 100083,China
2. Sinopec Green Energy Geothermal Development Co.,Ltd.,Xiong'an 071800,China
3. School of Environmental Studies,China University of Geosciences(Wuhan),Wuhan 430074,China
4. Beijing Judeng Geological Exploration Technology Co.,Ltd.,Beijing 102299,China
全文: PDF(4920 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为理清南宫地热田的地热资源赋存特征,运用大地电磁(MT)方法,结合钻孔和地质资料揭示了地热田地下地层、构造发育情况,系统分析了该区的浅、深部地热资源分布特征,阐述了热源机制,并构建了南宫地热田热储地质模型。结果显示:①南宫地热田4 000 m深度以内地层自上而下为第四系、新近系、古近系、二叠系、石炭系、奥陶系、寒武系;②南宫县城区东侧存在2条NE向隐伏正断层(F1和F2),倾向NW,倾角较陡,断层影响带上构造裂隙发育,富水性较好;③南宫地热田呈现二元热储结构,即浅部新近系明化镇组下部、馆陶组的孔隙砂岩热储和深部古生界寒武—奥陶系的基岩裂隙岩溶热储,浅、深部热储共同构成南宫地区重要的地热资源;④该地热田属于沉积盆地热传导型地热系统,其浅部热储的热量(储层温度为30~63 ℃)源自区域偏高的大地热流的垂直传导,而深部热储的热量(储层温度为60~78 ℃)主要来自沿断裂F1和F2的构造裂隙上升的热液对流和周边围岩的热能传递。基于本次研究得到的热储地质模型,南宫地热田深部基岩裂隙岩溶热储具备连通性好、循环深、厚度大、岩溶裂隙发育、渗透性好等特点,后续开发建议将井位选在深部热储层,且优先选择断裂构造F2的岩溶裂隙发育区。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢星辰
邢倩
许勇
吕国森
陈祥忠
王瑞兴
黄申硕
关键词 南宫地热田大地电磁法热储地质模型    
Abstract

To clarify the occurrence characteristics of geothermal resources in the Nangong geothermal field,this study revealed the subsurface strata and structures in the geothermal field using the magnetotelluric(MT) method in combination with drilling and geologic data.Furthermore,this study systematically analyzed the distributions of shallow and deep geothermal resources and elucidated the heat source mechanisms.Finally,this study constructed the geological model of the Nangong geothermal field.The results show that within a depth of 4000 m,the strata in the Nangong geothermal field comprise the Quaternary,Neogene,Paleogene,Permian,Carboniferous,Ordovician,and Cambrian strata from top to bottom.On the east side of the urban area of Nangong City, there are two concealed NE-trending normal faults(i.e.,F1 and F2),exhibiting a NW dip direction and steep dip angles.The fault-affected zone displays well-developed tectonic fractures and high water abundance.The Nangong geothermal field presents a dual geothermal reservoir system,comprising shallow porous sandstone reservoirs in the Neogene Minghuazhen(lower portion) and Guantao formations,and deep fissured-karstic bedrock reservoirs in the Paleozoic Cambrian-Ordovician strata.These reservoirs host significant geothermal resources in the Nangong area.The Nangong geothermal field belongs to a heat conduction-type geothermal system within a sedimentary basin.Specifically,the heat of shallow geothermal reservoirs(temperatures:30 ℃ to 63 ℃) is sourced from the vertical conduction of regionally high terrestrial heat flow,whereas the heat of deep geothermal reservoirs(temperatures:60 ℃ to 78 ℃) originates primarily from hydrothermal convection ascending through tectonic fractures along F1 and F2,and heat transfer from surrounding rocks.The geological model for geothermal reservoirs constructed in this study demonstrates that the deep fissured-karstic bedrock reservoirs in the Nangong geothermal field are characterized by high connectivity,deep circulation,considerable thickness,extensive karst fissure development,and high permeability.Therefore,deep geothermal reservoirs in the karst fissure zone along F2 are recommended for prioritized exploitation.

Key wordsNangong geothermal field    magnetotelluric method    geothermal reservoir    geological model
收稿日期: 2024-12-30      修回日期: 2025-02-25      出版日期: 2025-06-20
ZTFLH:  P631.4  
基金资助:中国石化集团新星石油有限责任公司项目“南宫地区地热资源赋存特征及地热成因研究”(10500000-24-ZC0607-0001);国家青年科学基金项目“雄安新区容城地热田深部热流体循环与演变机制”(41902310);矿冶科技集团有限公司“揭榜挂帅”科研基金项目(JTKY202427822)
通讯作者: 邢倩(1984-),女,高级工程师,主要从事新能源开发研究工作。Email:xingqian.xxsy@sinopec.com
作者简介: 卢星辰(1983-),男,高级工程师,主要从事地球物理勘探和地热地质研究工作。Email:luxingchen.xxsy@sinopec.com
引用本文:   
卢星辰, 邢倩, 许勇, 吕国森, 陈祥忠, 王瑞兴, 黄申硕. 基于大地电磁的南宫地热田地热资源赋存特征[J]. 物探与化探, 2025, 49(3): 559-568.
LU Xing-Chen, XING Qian, XU Yong, LYU Guo-Sen, CHEN Xiang-Zhong, WANG Rui-Xing, HUANG Shen-Shuo. Exploring the occurrence characteristics of geothermal resources in the Nangong geothermal field based on the magnetotelluric method. Geophysical and Geochemical Exploration, 2025, 49(3): 559-568.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1501      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I3/559
Fig.1  渤海湾盆地(a)、南宫凹陷及周边构造(b)和A-A'剖面(c)[14,22]
Fig.2  南宫地热田及周边地区地温梯度分区
Fig.3  Aether仪器系统(a)与仪器装置示意(b)
地层 岩性 电阻率范围
第四系、新近系 粉砂、黏土质粉砂、棕色粉砂质黏土 <15 Ω·m
古近系 砂砾岩、粉砂岩、粉砂质泥岩、砂岩、
泥岩
<10 Ω·m
石炭系、二叠系 砂岩、泥岩,夹煤层及薄层灰岩 15~25 Ω·m
寒武系、奥陶系 白云质灰岩、灰岩、白云岩等 >25 Ω·m
Table 1  研究区内地层电性参数统计
Fig.4  MT1线(a)和MT2线(b)电阻率等值线断面与推断成果
地层时代 底板埋深/m 厚度/m 岩性特征
Q 400~600 400~600 粉砂质黏土,粉细砂、中细砂夹
Nm 950~1200 450~650 黏土岩、砂质黏土岩与浅棕色粉砂岩、含砾砂岩互层
Ng 1300~1600 350~550 砂质泥岩、粉砂岩、泥岩、含砾粉砂岩
Ed 1600~1800 0~2000 碎屑沉积泥岩、砂质泥岩、砂岩
C+P 1600~2300 250~350 砂岩、泥岩,夹煤层及薄层灰岩
€+O >4000 >2000 岩性以厚层微晶灰岩、云斑灰岩、含燧石条带灰岩为主,夹白云质灰岩、细晶白云岩、泥质白云岩
Table 2  南宫地区地层信息统计
Fig.5  南宫地热田的推断热储平面
Fig.6  南宫地热田热储地质模型
[1] Capaccioni B, Vaselli O, Tassi F, et al. Hydrogeochemistry of the thermal waters from the sciacca geothermal field(Sicily,southern Italy)[J]. Journal of Hydrology, 2011, 396(3-4):292-301.
[2] 王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4):449-459.
[2] Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38(4):449-459.
[3] Lyu G S, Zhang X, Wei D H, et al. Water-rock interactions,genesis mechanism,and mineral scaling of geothermal waters in northwestern Sichuan,SW China[J]. Water, 2023, 15(21):3730.
[4] 韩术合, 裴秋明, 许健, 等. 综合物探方法在内蒙古敖汉旗林家地地热资源勘查中的应用试验[J]. 物探与化探, 2024, 48(4):962-970.
[4] Han S H, Pei Q M, Xu J, et al. Application of comprehensive geophysical prospecting in the exploration of geothermal resources in the Linjiadi area,Aohan Banner,Inner Mongolia[J]. Geophysical and Geochemical Exploration, 2024, 48(4):962-970.
[5] 雷清, 叶高峰, 吴晓飞, 等. 大地电磁测深法在冀中坳陷深部碳酸盐岩热储调查评价中的应用[J]. 地质论评, 2024, 70(2):795-806.
[5] Lei Q, Ye G F, Wu X F, et al. Application of the magnetotelluric sounding method in the investigation and evaluation of deep carbonate rock heat storage in the Jizhong Depression[J]. Geological Review, 2024, 70(2):795-806.
[6] 吕国森, 章旭, 张云辉, 等. 川西鲜水河、安宁河和龙门山断裂带地热水的水文地球化学特征及成因模式的讨论[J]. 中国地质, 2024, 51(1):341-359.
[6] Lyu G S, Zhang X, Zhang Y H, et al. Discussion on hydrogeochemical characteristics and genetic model of geothermal waters in Xianshuihe,Anninghe and Longmenshan fault zones in western Sichuan,China[J]. Geology in China, 2024, 51(1):341-359.
[7] 王贵玲. 开发地热新能源,构建清洁低碳、安全高效的能源体系[J]. 地质学报, 2020, 94(7):1921-1922.
[7] Wang G L. Develop new geothermal energy and build a clean,low-carbon,safe and efficient energy system[J]. Acta Geologica Sinica, 2020, 94(7):1921-1922.
[8] 章旭, 张文, 吕国森, 等. 川西阿坝州壤古温泉成因机制研究:来自水文地球化学和地球物理勘探的证据[J]. 沉积与特提斯地质, 2023, 43(2):388-403.
[8] Zhang X, Zhang W, Lyu G S, et al. Geochemical,geophysical genesis of the ranggu geothermal spring in Aba prefecture,western Sichuan:Evidence from hydrogeochemical and geophysical exploration[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(2):388-403.
[9] 王社教, 李峰, 闫家泓, 等. 油田地热资源评价方法及应用[J]. 石油学报, 2020, 41(5):553-564.
doi: 10.7623/syxb202005004
[9] Wang S J, Li F, Yan J H, et al. Evaluation methods and application of geothermal resources in oilfields[J]. Acta Petrolei Sinica, 2020, 41(5):553-564.
doi: 10.7623/syxb202005004
[10] 饶松, 肖红平, 王朱亭, 等. 渤海湾盆地馆陶组热储特征与地热资源评价[J]. 天然气工业, 2023, 43(5):141-152.
[10] Rao S, Xiao H P, Wang Z T, et al. Geothermal reservoir characteristics and geothermal resource evaluation of Guantao Formation in the Bohai Bay Basin[J]. Natural Gas Industry, 2023, 43(5):141-152.
[11] 卢荣茂. 河北省南宫市地热资源浅析[J]. 河北煤炭, 2004(6):31-32.
[11] Lu R M. Analysis of the geothermal resources in NanGong,Hebei Province[J]. Hebei Coal, 2004(6):31-32.
[12] Wang Z T, Jiang G Z, Zhang C, et al. Estimating geothermal resources in Bohai Bay Basin,Eastern China,using Monte Carlo simulation[J]. Environmental Earth Sciences, 2019, 78(12):355.
[13] 王颖, 陈学蓉. 大地电磁法在南宫地热勘查中的应用[J]. 中文科技期刊数据库(全文版)自然科学, 2022(6):279-282.
[13] Wang Y, Chen X R. Application of magnetotelluric method in geothermal exploration in Nangong[J]. Chinese Science and Technology Journal Database(Full-textEdition) Natural Science, 2022(6):279-282.
[14] Liu T S, Ding W L, Zhang R F, et al. Cenozoic tectonostratigraphy and structural styles in the Nangong Sag,Bohai Bay Basin,Eastern China:Implications for the generation of oil-gas traps[J]. Marine and Petroleum Geology, 2023,149:106081.
[15] Spichak V, Manzella A. Electromagnetic sounding of geothermal zones[J]. Journal of Applied Geophysics, 2009, 68(4):459-478.
[16] Spichak V, Zakharova O, Rybin A, et al. Estimation of the sub-surface temperature by means of magnetotelluric sounding[C]// Stanford:Stanford Geothermal Program,32nd Workshop on Geothermal Reservoir Engineering 2007,2007.
[17] 张炯, 黄少鹏, 傅饶, 等. 大地电磁测深在火山区地热研究中的应用[J]. 岩石学报, 2017, 33(1):279-290.
[17] Zhang J, Huang S P, Fu R, et al. Application of magnetotellurics in geothermal exploration and research in volcano areas[J]. Acta Petrologica Sinica, 2017, 33(1):279-290.
[18] Simpson F, Bahr K. Practical magnetotellurics[M]. Cambridge: Cambridge University Press, 2005.
[19] Zhang L L, Hao T Y, Xiao Q B, et al. Magnetotelluric investigation of the geothermal anomaly in Hailin,Mudanjiang,northeastern China[J]. Journal of Applied Geophysics, 2015,118:47-65.
[20] Arafa-Hamed T, Abdel Zaher M, El-Qady G, et al. Deep heat source detection using the magnetotelluric method and geothermal assessment of the Farafra Oasis,Western Desert,Egypt[J]. Geothermics, 2023,109:102648.
[21] 于晓卫. 南宫凹陷中、新生界油气地质条件研究[D]. 青岛: 山东科技大学, 2010.
[21] Yu X W. Study on Mesozoic and Cenozoic petroleum geological conditions in Nangong sag[D]. Qingdao: Shandong University of Science and Technology, 2010.
[22] 刘琼颖, 何丽娟. 渤海湾盆地新生代以来构造—热演化模拟研究[J]. 地球物理学报, 2019, 62(1):219-235.
[22] Liu Q Y, He L J. Tectono-thermal modeling of the Bohai Bay basin since the Cenozoic[J]. Chinese Journal of Geophysics, 2019, 62(1):219-235.
[23] 姜光政, 高堋, 饶松, 等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报, 2016, 59(8):2892-2910.
doi: 10.6038/cjg20160815
[23] Jiang G Z, Gao P, Rao S, et al. Compilation of heat flow data in the continental area of China(4th edition)[J]. Chinese Journal of Geophysics, 2016, 59(8):2892-2910.
[24] Qiu N S, Chang J, Zhu C Q, et al. Thermal regime of sedimentary basins in the Tarim,Upper Yangtze and North China Cratons,China[J]. Earth-Science Reviews, 2022,224:103884.
[25] 王凯, 张杰, 白大为, 等. 雄安新区地热地质模型探究:来自地球物理的证据[J]. 中国地质, 2021, 48(5):1453-1468.
[25] Wang K, Zhang J, Bai D W, et al. Geothermal-geological model of Xiongan New Area:Evidence from geophysics[J]. Geology in China, 2021, 48(5):1453-1468.
[26] Cagniard L. Basic theory of the magneto-telluric method of geophysical prospecting[J]. Geophysics, 1953, 18(3):605.
[27] Hager W, Zhang H C. A survey of nonlinear conjugate gradient methods[J]. Pacific Journal of Optimization, 2006, 2(1):35-58.
[28] 张一, 刘鹏磊, 王玉敏, 等. 综合物探技术在济南北部地热勘查中的应用[J]. 物探与化探, 2024, 48(1):58-66.
[28] Zhang Y, Liu P L, Wang Y M, et al. Application of integrated geophysical exploration technology in the geothermal exploration of northern Jinan[J]. Geophysical and Geochemical Exploration, 2024, 48(1):58-66.
[29] 王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7):1923-1937.
[29] Wang G L, Lin W J. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 2020, 94(7):1923-1937.
[30] 许红, 张海洋, 张德润, 等. 下扬子区海陆盆地构造分割的深大断裂证据与地质构造意义[J]. 海洋地质前沿, 2016, 32(3):16-23.
[30] Xu H, Zhang H Y, Zhang D R, et al. The deep faults separating land and sea basins in Lower Yangtze region and their tectonic significance[J]. Marine Geology Frontiers, 2016, 32(3):16-23.
[31] 孙耀庭, 徐守余, 张世奇, 等. 渤海湾盆地临清坳陷西部中生界烃源岩生烃演化[J]. 天然气地球科学, 2015, 26(10):1910-1916.
doi: 10.11764/j.issn.1672-1926.2015.10.1910
[31] Sun Y T, Xu S Y, Zhang S Q, et al. Evolution of the Mesozoic source rocks in the west Linqing depression[J]. Natural Gas Geoscience, 2015, 26(10):1910-1916.
[32] Qiu N S, Xu W, Zuo Y H, et al. Meso-Cenozoic thermal regime in the Bohai Bay Basin,eastern North China Craton[J]. International Geology Review, 2015, 57(3):271-289.
[33] Yang M B, Liu G P, Liu Z, et al. Geochemical characteristics of geothermal and hot spring gases in Beijing and Zhangjiakou Bohai fault zone[J]. Frontiers in Earth Science, 2022,10:933066.
[1] 李栋, 张明财, 吴远洋. 音频大地电磁接地电阻校正技术研究[J]. 物探与化探, 2025, 49(3): 614-619.
[2] 孙栋华, 陈伟, 程莎莎, 石连成, 张俊伟, 祁平, 杨玉勤. 砂岩型铀矿勘查多元地学信息三维地质建模技术研究[J]. 物探与化探, 2025, 49(3): 631-641.
[3] 王鹤宇, 武国朋, 陈国雄, 柴建州, 毛杰, 王德涛. 基于微动勘探研究山西运城盐湖区地热田深部控热控水构造[J]. 物探与化探, 2025, 49(1): 32-40.
[4] 胡士晖, 闵刚, 孙浥钦, 陈春江, 李春婷, 张志豪. 基于聚类分析的ModEM三维反演复杂地形网格剖分[J]. 物探与化探, 2025, 49(1): 148-157.
[5] 王国建, 胡文慧, 李广之, 朱怀平, 胡斌, 肖鹏飞, 张英. 安徽滁河断裂带温泉水地球化学特征及其形成机理[J]. 物探与化探, 2024, 48(5): 1223-1231.
[6] 张继伟, 谭慧. 可控源音频大地电磁和微动资料的拟二维联合反演[J]. 物探与化探, 2024, 48(4): 1094-1102.
[7] 韩术合, 裴秋明, 许健, 宋志勇, 莫海斌. 综合物探方法在内蒙古敖汉旗林家地地热资源勘查中的应用试验[J]. 物探与化探, 2024, 48(4): 962-970.
[8] 陈永凌, 蒋首进, 谢丹, 王嘉, 何志雄, 刘澄. 阿里地区日土县综合物探方法找水研究[J]. 物探与化探, 2024, 48(3): 668-674.
[9] 秦长春, 牛峥, 李婧. 可控源音频大地电磁法电阻率与阻抗相位双参数综合判定煤矿双层采空区[J]. 物探与化探, 2024, 48(3): 690-697.
[10] 陈兴朋, 王亮, 龙霞, 席振铢, 亓庆新, 薛军平, 戴云峰, 胡子君. CSRMT正交水平发射源电磁场分布规律研究[J]. 物探与化探, 2024, 48(3): 721-735.
[11] 付兴, 谭捍东, 董岩, 汪茂. 基于监督下降法的大地电磁二维反演及应用研究[J]. 物探与化探, 2024, 48(1): 175-184.
[12] 郑浩, 崔月, 许璐, 齐鹏. 华南火成岩区深层地热勘探地震处理关键技术[J]. 物探与化探, 2024, 48(1): 88-97.
[13] 程正璞, 连晟, 魏强, 胡文广, 雷鸣, 李戍. 雄安新区深部雾迷山组热储层时频电磁法探测研究[J]. 物探与化探, 2023, 47(6): 1400-1409.
[14] 周建兵, 罗锐恒, 贺昌坤, 潘晓东, 张绍敏, 彭聪. 文山小河尾水库岩溶含水渗漏通道的地球物理新证据[J]. 物探与化探, 2023, 47(3): 707-717.
[15] 王军成, 赵振国, 高士银, 罗传根, 李琳, 徐明钻, 李勇, 袁国境. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2): 321-330.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com