Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (3): 588-598    DOI: 10.11720/wtyht.2025.1427
  地质调查资源勘查 本期目录 | 过刊浏览 | 高级检索 |
昆特依气田2区块基岩裂缝预测及孔—缝叠置分析
马元琨1,2(), 温中林1,2, 李积永1,2, 王海成1,2, 陈芳芳1,2, 徐钰1,2, 张蕾1,2, 潘以红3
1.中国石油青海油田分公司 勘探开发研究院,甘肃 敦煌 736202
2.青海省高原咸化湖盆油气地质重点实验室,甘肃 敦煌 736202
3.北京博达瑞恒科技有限公司,北京 100101
Bedrock fracture prediction and pore-fracture overlay analysis: A case study of the Kun 2 block in the Kunteyi gas field
MA Yuan-Kun1,2(), WEN Zhong-Lin1,2, LI Ji-Yong1,2, WANG Hai-Cheng1,2, CHEN Fang-Fang1,2, XU Yu1,2, ZHANG Lei1,2, PAN Yi-Hong3
1. Exploration and Development Research Institute of PetroChina Qinghai Oilfield Company, Dunhuang 736202, China
2. Key Laboratory of Oil and Gas Geology in Salinized Lake Basin of Qinghai Province, Dunhuang 736202, China
3. PST Service Corp., Beijing 100101, China
全文: PDF(9292 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

针对柴达木盆地昆特依气田昆2区块基岩目的层中的储层储集空间发育溶蚀孔和裂缝认识不清楚的问题,利用地震资料分选5大类12种属性分别对基岩储层进行裂缝预测和对比分析,结果表明:最大似然属性与井资料吻合好,纵横向分辨率高,优于曲率、相干、不连续和相似性类属性。同时,采用溶孔-裂缝叠合分析法,有效预测了基岩储层分布有利区,为后续开发井位部署提供了依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马元琨
温中林
李积永
王海成
陈芳芳
徐钰
张蕾
潘以红
关键词 昆特依气田裂缝预测容孔最大似然属性    
Abstract

This study aims to determine the development of dissolution pores and fractures in the target bedrock reservoir space in the Kun 2 block in the Kunteyi gas field within the Qaidam Basin. The seismic data were classified into 12 attributes in five major categories for fracture prediction and comparative analysis of bedrock reservoirs. The results show that the maximum likelihood attribute aligned highly with the well data, with high vertical and horizontal resolution, superior to curvature, coherence, discontinuity, and similarity attributes. Moreover, the favorable areas for the distribution of bedrock reservoirs were effectively predicted using the dissolution pore-fracture overlay analysis method, providing a basis for subsequent exploitation well deployment.

Key wordsKunteyi    fracture prediction    dissolution pore    maximum likelihood attribute
收稿日期: 2024-10-22      修回日期: 2024-11-20      出版日期: 2025-06-20
ZTFLH:  P631.4  
作者简介: 马元琨(1992-),男,青海海东人,学士,高级工程师,主要从事油气田开发地质研究工作。Email:mykyjyqh@petrochina.com.cn
引用本文:   
马元琨, 温中林, 李积永, 王海成, 陈芳芳, 徐钰, 张蕾, 潘以红. 昆特依气田2区块基岩裂缝预测及孔—缝叠置分析[J]. 物探与化探, 2025, 49(3): 588-598.
MA Yuan-Kun, WEN Zhong-Lin, LI Ji-Yong, WANG Hai-Cheng, CHEN Fang-Fang, XU Yu, ZHANG Lei, PAN Yi-Hong. Bedrock fracture prediction and pore-fracture overlay analysis: A case study of the Kun 2 block in the Kunteyi gas field. Geophysical and Geochemical Exploration, 2025, 49(3): 588-598.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1427      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I3/588
Fig.1  昆特依气田昆2区块基岩顶界构造
Fig.2  冷北斜坡地层柱状图
Fig.3  不同属性的裂缝预测效果对比
Fig.4  已钻井的最大似然属性裂缝预测剖面与成像测井解释结果对比
Fig.5  测井解释孔隙度与地震预测裂缝强度交汇图
Fig.6  过昆101、昆2-2、昆2-X1、昆2、昆1-1井联井裂缝预测剖面
Fig.7  昆特依区块基岩0~300 m段裂缝预测平面分布
Fig.8  过昆101、昆2-2、昆2-X1、昆2、昆1-1井联井孔—缝叠合剖面
Fig.9  昆特依区块基岩分段孔—缝叠合平面分布
Fig.10  昆特依区块0~300 m段孔—缝叠合平面分布
Fig.11  昆特依区块0~300 m段综合评价成果
[1] 苟迎春, 李延丽, 赵为永, 等. 阿尔金山前基岩气藏储层特征差异性研究[J]. 东华理工大学学报:自然科学版, 2023, 46(5):499-509.
[1] Gou Y C, Li Y L, Zhao W Y, et al. Study on the difference in reservoir characteristics of bedrock gas reservoir in the altun piedmont[J]. Journal of East China University of Technology:Natural Science Edition, 2023, 46(5):499-509.
[2] 李欣. 阿尔金山前带东段基岩储层特征研究[D]. 北京: 中国石油大学(北京), 2019.
[2] Li X. Study on the characteristics of bedrock reservoir in the eastern part of Altun Mountain front belt[D]. Beijing: China University of Petroleum (Beijing), 2019.
[3] 孙秀建, 杨巍, 白亚东, 等. 柴达木盆地基岩油气藏储盖特征及组合方式[J]. 天然气地球科学, 2019, 30(2):228-236.
doi: 10.11764/j.issn.1672-1926.2018.09.014
[3] Sun X J, Yang W, Bai Y D, et al. Characterization of the reservoir-caprock assemblage of the basement reservoir in the Qaidam Basin,China[J]. Natural Gas Geoscience, 2019, 30(2):228-236.
[4] 张文, 伍新明, 漆杰. 地震几何属性的快速算法实现[J]. 地球物理学报, 2023, 66(8):3374-3390.
[4] Zhang W, Wu X M, Qi J. Fast computation of seismic geometric attributes[J]. Chinese Journal of Geophysics, 2023, 66(8):3374-3390.
[5] 曹欢, 赵杨, 帅达, 等. 基于HTI介质地震曲率属性的地应力估算方法及其在威远地区的应用[J]. 地球物理学报, 2024, 67(5):1970-1986.
[5] Cao H, Zhao Y, Shuai D, et al. Using 3D seismic data to estimate stress based on seismic curvature attribute of HTI medium:Application to the Weiyuan,southern Sichuan Basin,China[J]. Chinese Journal of Geophysics, 2024, 67(5):1970-1986.
[6] 杨国权, 刘延利, 张红文. 曲率属性计算方法研究及效果分析[J]. 地球物理学进展, 2015, 30(5):2282-2286.
[6] Yang G Q, Liu Y L, Zhang H W. The calculation method of curvature attributes and its effect analysis[J]. Progress in Geophysics, 2015, 30(5):2282-2286.
[7] Chen X H, Yang W, He Z H, et al. The algorithm of 3D multi-scale volumetric curvature and its application[J]. Applied Geophysics, 2012, 9(1):65-72.
[8] 王楷, 印兴耀, 马正乾, 等. 基于多方位相干属性的断裂预测技术[J]. 地球物理学报, 2023, 66(9):3828-3839.
[8] Wang K, Yin X Y, Ma Z Q, et al. Fault prediction method based on multi-azimuth coherence attribute[J]. Chinese Journal of Geophysics, 2023, 66(9):3828-3839.
[9] 程晓艳, 胡曦, 罗颖, 等. 基于相干约束的页岩裂缝OVT地震预测方法研究及应用[J]. 断块油气田, 2023, 30(6):982-990.
[9] Cheng X Y, Hu X, Luo Y, et al. Research and application of OVT seismic prediction method for shale fractures based on coherence constraints[J]. Fault-Block Oil & Gas Field, 2023, 30(6):982-990.
[10] 肖湘, 尹成, 彭达, 等. 薄砂岩储层内部不连续性检测技术[J]. 石油物探, 2022, 61(4):635-646.
doi: 10.3969/j.issn.1000-1441.2022.04.007
[10] Xiao X, Yin C, Peng D, et al. Detection of discontinuities inside a thin sandstone reservoir[J]. Geophysical Prospecting for Petroleum, 2022, 61(4):635-646.
[11] 黎康毅, 陈学华, 吴昊杰, 等. 地震不连续信息的自适应方向增强检测及应用[J]. 石油地球物理勘探, 2023, 58(6):1446-1453.
[11] Li K Y, Chen X H, Wu H J, et al. Adaptive directional enhancement detection and application of seismic discontinuity information[J]. Oil Geophysical Prospecting, 2023, 58(6):1446-1453.
[12] 范廷恩, 张晶玉, 王海峰, 等. 砂岩储层横向不连续性检测技术组合及应用[J]. 石油地球物理勘探, 2021, 56(1):155-163,10-11.
[12] Fan T E, Zhang J Y, Wang H F, et al. Combination and application of detecting technology for lateral discontinuity of sandstone reservoir[J]. Oil Geophysical Prospecting, 2021, 56(1):155-163,10-11.
[13] 张瑞, 文晓涛, 李世凯, 等. 分频蚂蚁追踪在识别深层小断层中的应用[J]. 地球物理学进展, 2017, 32(1):350-356.
[13] Zhang R, Wen X T, Li S K, et al. Application of frequency division ant-tracking in identifying deep minor fault[J]. Progress in Geophysics, 2017, 32(1):350-356.
[14] 谢清惠, 蒋立伟, 赵春段, 等. 提高蚂蚁追踪裂缝预测精度的应用研究[J]. 物探与化探, 2021, 45(5):1295-1302.
[14] Xie Q H, Jiang L W, Zhao C D, et al. Application study of improving the precision of the ant-tracking-based fracture prediction technique[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1295-1302.
[15] 秦德文, 刘庆文, 李琴. 基于保边滤波的断层似然属性在西湖凹陷复杂断裂识别中的应用[J]. 海洋地质前沿, 2024, 40(5):91-98.
[15] Qin D W, Liu Q W, Li Q. Application of fault likelihood attribute based on edge-preserved filter in complex fault identification of Xihu Sag[J]. Marine Geology Frontiers, 2024, 40(5):91-98.
[16] 李飞跃, 王涛, 曾清波, 等. 基于构造导向的高清似然属性在白云凹陷深层断裂预测中的应用[J]. 石油物探, 2023, 62(1):163-172.
doi: 10.3969/j.issn.1000-1441.2023.01.014
[16] Li F Y, Wang T, Zeng Q B, et al. Application of high-definition likelihood attributes based on structure orientation in the prediction of deep faults in Baiyun Sag[J]. Geophysical Prospecting for Petroleum, 2023, 62(1):163-172.
doi: 10.3969/j.issn.1000-1441.2023.01.014
[17] 甄宗玉, 郑江峰, 孙佳林, 等. 基于最大似然属性的断层识别方法及应用[J]. 地球物理学进展, 2020, 35(1):374-378.
[17] Zhen Z Y, Zheng J F, Sun J L, et al. Fault identification method based on the maximum likelihood attribute and its application[J]. Progress in Geophysics, 2020, 35(1):374-378.
[18] 王腊梅, 娄敏, 李炳颖, 等. 最大似然属性在致密砂岩储层微断裂识别中的应用——以西湖凹陷花港组为例[J]. 石油地质与工程, 2024, 38(1):1-5,12.
[18] Wang L M, Lou M, Li B Y, et al. Maximum likelihood attribute and its application in micro-fractures identification of tight sandstone reservoirs:A case study of Huagang Formation in Xihu Sag[J]. Petroleum Geology and Engineering, 2024, 38(1):1-5,12.
[19] 王光华. 柴达木盆地阿尔金山前带东段断裂特征及演化[D]. 成都: 西南石油大学, 2015.
[19] Wang G H. Characteristics and evolution of faults in the eastern part of Altun Mountain front belt in Qaidam Basin[D]. Chengdu: Southwest Petroleum University, 2015.
[20] 李俊, 张西营, 张星, 等. 柴达木盆地昆特依盐湖含杂卤石地层高分辨率矿物学研究[J]. 地质学报, 2021, 95(7):2138-2149.
[20] Li J, Zhang X Y, Zhang X, et al. High-resolution mineralogical investigations on polyhalite-bearing strata in the Kunteyi salt lake,Qaidam basin[J]. Acta Geologica Sinica, 2021, 95(7):2138-2149.
[21] 汪泽成, 江青春, 王居峰, 等. 基岩油气成藏特征与中国陆上深层基岩油气勘探方向[J]. 石油勘探与开发, 2024, 51(1):28-38.
doi: 10.11698/PED.20230233
[21] Wang Z, Jiang Q, Wang J, et al. Hydrocarbon accumulation characteristics in basement reservoirs and exploration targets of deep basement reservoirs in onshore China[J]. Petroleum Exploration and Development, 2024, 51(1):28-38.
[22] 陈刚, 李世昌, 宋斯宇, 等. 2024. 地震叠后和叠前混合驱动下的页岩油储层多尺度裂缝预测方法[J]. 地球物理学报, 67(7):2830-2849.
[22] Chen G, Li S C, Song S Y, et al. 2024. Multi-scale fracture prediction of shale oil reservoir driven by the combination of posstack and pre-stack seismic data[J]. Chinese J.Geophys., 67(7):2830-2849.
[23] 张冰, 徐嘉亮, 王维红, 等. 基于最大似然属性和拉普拉斯金字塔的断面波增强方法建立[J]. 地球物理学报, 2021, 64(8):2829-2837.
doi: 10.6038/cjg2021P0302
[23] Zhang B, Xu J L, Wang W H, et al. Fault-surface wave enhancement technology based on maximum likelihood attributes and Laplace pyramid[J]. Chinese Journal of Geophysics, 2021, 64(8):2829-2837.
[24] 马德波, 赵一民, 张银涛, 等. 最大似然属性在断裂识别中的应用——以塔里木盆地哈拉哈塘地区热瓦普区块奥陶系走滑断裂的识别为例[J]. 天然气地球科学, 2018, 29(6):817-825.
doi: 10.11764/j.issn.1672-1926.2018.04.006
[24] Ma D B, Zhao Y M, Zhang Y T, et al. Application of maximum likelihood attribute to fault identification:A case study of Rewapu block in Halahatang area,Tarim Basin,NW China[J]. Natural Gas Geoscience, 2018, 29(6):817-825.
[1] 黄彦庆. 川东北元坝地区致密砂岩多产状裂缝刻画[J]. 物探与化探, 2023, 47(5): 1189-1197.
[2] 谢锐, 阎建国, 陈琪. 叠前各向异性系数反演及在裂缝预测中的应用[J]. 物探与化探, 2022, 46(4): 968-976.
[3] 谢清惠, 蒋立伟, 赵春段, 王仲达, 唐协华, 罗瑀峰. 提高蚂蚁追踪裂缝预测精度的应用研究[J]. 物探与化探, 2021, 45(5): 1295-1302.
[4] 黄苇, 周捷, 高利君, 王胜利, 严海滔. 基于同步挤压改进短时傅立叶变换的分频蚂蚁追踪在断裂识别中的应用[J]. 物探与化探, 2021, 45(2): 432-439.
[5] 党青宁, 崔永福, 陈猛, 赵锐锐, 刘伟明, 李勇军. OVT域叠前裂缝预测技术——以塔里木盆地塔中ZG地区奥陶系碳酸盐岩为例[J]. 物探与化探, 2016, 40(2): 398-404.
[6] 王丹, 贾跃玮, 魏水建, 郑文波. 新场须四段叠后裂缝综合预测[J]. 物探与化探, 2014, 38(5): 1038-1044.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com