Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (5): 1284-1293    DOI: 10.11720/wtyht.2024.1528
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
海岸效应对大地电磁测深数据畸变影响研究
杨富强1,2(), 廖海志1, 王正3(), 莫亚军1, 李叶飞1, 刘营2
1.广西壮族自治区地球物理勘察院,广西 柳州 545005
2.中国地质大学(武汉) 地球物理与空间信息学院 地球内部多尺度成像湖北省重点实验室,湖北 武汉 430074
3.江西省勘察设计研究院有限公司 南昌市水文地质与优质地下水资源开发利用重点实验室,江西 南昌 330095
Impacts of coastal effects on the distortion of magnetotelluric data
YANG Fu-Qiang1,2(), LIAO Hai-Zhi1, WANG Zheng3(), MO Ya-Jun1, LI Ye-Fei1, LIU Ying2
1. Geophysical Survey Institute of Guangxi Zhuang Autonomous Region, Liuzhou 545005, China
2. Hubei Subsurface Multi-Scale Imaging Key Laboratory, School of Geophysics and Geomatics, China University of Geosciences(Wuhan), Wuhan 430074, China
3. Jiangxi Survey and Design Research Institute of Co., Ltd., Nanchang Key Laboratory of Hydrogeology and High-quality Groundwater Resources Exploitation and Utilization, Nanchang 330095, China
全文: PDF(14816 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在近海地区采集的大地电磁数据往往受到海岸效应影响而产生畸变,导致难以获得真实的地下电性结构。本文基于含海水的半空间模型、二维电各向同性和电各向异性模型以及三维电各向同性模型,通过正演模拟分析海岸效应影响下的大地电磁响应的畸变规律,开展了考虑海水约束与否的二维和三维反演研究。结果表明,大地电磁测深视电阻率曲线发生畸变的起始频点与测点离海水的距离密切相关。相对于无海岸效应的响应,在高频部分,仅近海区域的测点表现为实感应矢量幅值增大,相位张量椭圆扁率变大;而在低频部分,海岸效应的影响区域扩大。不考虑海水约束时,反演结果在近海区域出现假异常,对地下异常体的恢复效果较差;考虑海水约束时,约束反演能够有效地压制海岸效应对反演造成的畸变影响。本研究将为近海地区大地电磁数据采集与处理解释提供重要的参考价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨富强
廖海志
王正
莫亚军
李叶飞
刘营
关键词 大地电磁海岸效应电各向异性二维和三维正反演    
Abstract

Magnetotelluric (MT) data collected from offshore areas are generally distorted due to coastal effects, posing challenges in obtaining true subterranean electrical structures. Based on the model of half-space with seawater, 2D electrical isotropy and anisotropy models, and 3D electrical isotropy model, this study analyzed the distortion patterns of MT responses under coastal effects through forward modeling. Moreover, it conducted 2D and 3D inversions of MT data with or without seawater constraints. Key findings are as follows: (1) The initial frequency points of distortion in MT apparent resistivity curves are closely correlated to the distances from survey points to seawater; (2) Compared to MT responses free from coastal effects, the high-frequency sections exhibit increased amplitudes in real induction vectors only at survey points in offshore areas and higher phase tensor ellipticity, whereas the low-frequency sections display expanded influence areas subjected to coastal effects; (3) Excluding seawater constraints, the inversion results show false anomalies in offshore areas and poor reconstruction effects on subsurface anomalies. Considering seawater constraints, the constrained inversion can effectively suppress the distortion caused by coastal effects. Overall, this study will provide a significant reference for the collection, processing, and interpretation of MT data from offshore areas.

Key wordsmagnetotellurics    coastal effect    electrical anisotropy    2D and 3D    forward and inverse modeling
收稿日期: 2024-12-08      修回日期: 2024-06-17      出版日期: 2024-10-20
ZTFLH:  P631  
基金资助:广西壮族自治区地质矿产勘查开发局科研项目(桂地矿综研[2022]16号);广西壮族自治区地质矿产勘查开发局科研项目(桂地矿综研[2023]9号);广西壮族自治区地质矿产勘查开发局科研项目(桂地矿函[2024]67号)
通讯作者: 王正(1996-),男,硕士,主要从事大地电磁正反演研究工作。Email:1172165312@qq.com
作者简介: 杨富强(1984-),男,博士研究生,主要从事综合地球物理研究工作。Email:fuqiangyang_gsi@163.com
引用本文:   
杨富强, 廖海志, 王正, 莫亚军, 李叶飞, 刘营. 海岸效应对大地电磁测深数据畸变影响研究[J]. 物探与化探, 2024, 48(5): 1284-1293.
YANG Fu-Qiang, LIAO Hai-Zhi, WANG Zheng, MO Ya-Jun, LI Ye-Fei, LIU Ying. Impacts of coastal effects on the distortion of magnetotelluric data. Geophysical and Geochemical Exploration, 2024, 48(5): 1284-1293.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1528      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I5/1284
Fig.1  含海水层地电模型
Fig.2  模型A测点视电阻率曲线起始畸变频率随距海水距离和海水深度变化的统计
Fig.3  模型B1和B2在有、无海水情况下正演所得的相位张量和实感应矢量响应
a、c—分别是模型B1、B2在无海岸效应影响下的正演响应; b、d—相对应B1、B2在海岸效应影响下的正演响应
Fig.4  模型C在有、无海水情况下正演所得不同周期的相位张量响应
a、c、e、g—模型C在无海水情况下不同周期的正演响应; b、d、f、h—模型C在有海水情况下不同周期的正演响应
Fig.5  模型C在有、无海水情况下正演所得的不同周期的实感应矢量响应
a、c、e、g—模型C在无海水情况下不同周期的正演响应;b、d、f、h—模型C在有海水情况下不同周期的正演响应
Fig.6  模型B1(a)和B2(b)不考虑海水约束的二维反演结果
Fig.7  模型C不考虑海水约束的三维反演结果
a~d—2.1 km、5 km、8.6 km和12 km深度处的水平切片结果;e—x=0 km处的剖面结果;f—y=0 km处的剖面结果。剖面平面位置见图b,黑色虚线框表示异常体,白色圆点为测点
Fig.8  模型B1(a)和B2(b)考虑海水约束的二维反演结果
Fig.9  模型C考虑海水约束的三维反演结果
a~d—2.1km、5km、8.6km和12km深度处的水平切片结果;e—x=0 km处的剖面结果;f—y=0 km处的剖面结果。剖面平面位置见图b,黑色虚线框表示异常体,白色圆点为测点
[1] Liu L, Bian A, Heinson G, et al. The relation of regional earthquakes to an intraplate volcano in the northern Hainan Island,China from magnetotelluric imaging[J]. Tectonophysics, 2023,862:229981.
[2] 康敏, 康健, 秦建增. 音频大地电磁法对隐伏构造的识别与应用——以河南省郑州市老鸦陈周边为例[J]. 物探与化探, 2018, 42(1):61-67.
[2] Kang M, Kang J, Qin J Z. Identification and application of audio magnetotellurics to the hidden structure:A case study of Laoyachen in Zhengzhou,Henan Province[J]. Geophysical and Geochemical Exploration, 2018, 42(1):61-67.
[3] 孙浩, 刘营, 王正, 等. 音频大地电磁约束反演在地层识别中的应用:以哈密盆地为例[J]. 地球科学, 2022, 47(11):4280-4293.
[3] Sun H, Liu Y, Wang Z, et al. Constrained inversion of audio magnetotelluric for identifying strata:A case study in Hami Basin[J]. Earth Science, 2022, 47(11):4280-4293.
[4] 吴旭亮, 李茂. 基于AMT的龙首山成矿带西岔地段马路沟断裂带深部发育特征[J]. 物探与化探, 2022, 46(5):1180-1186.
[4] Wu X L, Li M. Deep occurrence characteristics of the Malugou fault zone in the Xicha section of the Longshoushan metallogenic belt determined based on AMT[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1180-1186.
[5] 游越新, 邓居智, 陈辉, 等. 综合物探方法在云南澜沧老厂多金属矿区深部找矿中的应用[J]. 物探与化探, 2023, 47(3):638-647.
[5] You Y X, Deng J Z, Chen H, et al. Application of integrated geophysical methods in deep ore prospecting of Laochang polymetallic mining area in Lancang,Yunnan[J]. Geophysical and Geochemical Exploration, 2023, 47(3):638-647.
[6] 赵宝峰, 汪启年, 郭信, 等. 汝城盆地深部构造及地热资源赋存潜力——基于重力与AMT探测的认识[J]. 物探与化探, 2023, 47(5):1147-1156.
[6] Zhao B F, Wang Q N, Guo X, et al. Gravity survey and audio magnetotellurics-based insights into the deep structures and geothermal resource potential of the Rucheng Basin[J]. Geophysical and Geochemical Exploration, 2023, 47(5):1147-1156.
[7] Evans R L, Hirth G, Baba K, et al. Geophysical evidence from the MELT area for compositional controls on oceanic plates[J]. Nature, 2005, 437(7056):249-252.
[8] 李飞, 董浩, 崔志强, 等. 滩涂区综合地球物理调查技术在栟茶河断裂空间展布中的应用[J]. 地质与勘探, 2020, 56(3):566-579.
[8] Li F, Dong H, Cui Z Q, et al. Application of integrated geophysical survey technology in the spatial distribution of benchahe fault in Rudong mudflat area,Jiangsu Province[J]. Geology and Exploration, 2020, 56(3):566-579.
[9] Yang J M, Lee C, Yoo H. Correction of the sea effect in the magnetotelluric (MT) data using an iterative tensor stripping during inversion[J]. Journal of Korean Geophysics and Geophysical Exploration, 2008,(11):286-301.
[10] 张帆, 魏文博, 金胜, 等. 海岸效应对近海地区大地电磁测深数据畸变作用研究[J]. 地球物理学报, 2012, 55(12):4023-4035.
[10] Zhang F, Wei W B, Jin S, et al. Ocean coast effect on land-side magnetotelluric data in the vicinity of the coast[J]. Chinese Journal of Geophysics, 2012, 55(12):4023-4035.
[11] Parkinson W D. Directions of rapid geomagnetic fluctuations[J]. Geophysical Journal International, 1959, 2(1):1-14.
[12] Jones F W. Geomagnetic effects of sloping and shelving discontinuities of earth conductivity[J]. Geophysics, 1971, 36(1):58.
[13] Lines L R, Jones F W. The perturbation of alternating geomagnetic fields by an island near a coastline:Reply[J]. Canadian Journal of Earth Sciences, 1973, 10(4):510-518.
[14] Jones F W, Lokken J E. Irregular coastline and channeling effects in three-dimensional geomagnetic perturbation models[J]. Physics of the Earth and Planetary Interiors, 1975, 10(2):140-150.
[15] Parkinson W D, Jones F W. The geomagnetic coast effect[J]. Reviews of Geophysics, 1979, 17(8):1999-2015.
[16] Cox C. Electromagnetic induction in the oceans and inferences on the constitution of the earth[J]. Geophysical Surveys, 1980, 4(1):137-156.
[17] Key K, Constable S. Coast effect distortion of marine magnetotelluric data:Insights from a pilot study offshore northeastern Japan[J]. Physics of the Earth and Planetary Interiors, 2011, 184(3/4):194-207.
[18] Wang S G, Constable S, Reyes-Ortega V, et al. A newly distinguished marine magnetotelluric coast effect sensitive to the lithosphere-asthenosphere boundary[J]. Geophysical Journal International, 2019, 218(2):978-987.
[19] 李永博, 吴琼, 王刚, 等. 海岸效应对大地电磁响应的影响及校正方法[J]. 石油地球物理勘探, 2021, 56(3):631-644,417.
[19] Li Y B, Wu Q, Wang G, et al. Study on the influence and correction method of coast effect on magnetotelluric responses[J]. Oil Geophysical Prospecting, 2021, 56(3):631-644,417.
[20] 杨文采, 方慧, 程振炎, 等. 苏鲁超高压变质带北部地球物理调查(Ⅱ)——非地震方法[J]. 地球物理学报, 1999, 42(4):508-519.
[20] Yang W C, Fang H, Cheng Z Y, et al. Geophysical investigation of northern Sulu uhpm terrane in East China (ⅱ):Non-seismic methods[J]. Chinese Journal of Geophysics, 1999, 42(4):508-519.
[21] Liu Y, Junge A, Yang B, et al. Electrically anisotropic crust from three-dimensional magnetotelluric modeling in the western Junggar,NW China[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(9):9474-9494.
[22] 刘营, 胡道功, 许顺芳, 等. 琼北第四纪火山区电各向异性结构及其地质意义[J]. 地球科学, 2020, 45(1):330-340.
[22] Liu Y, Hu D G, Xu S F, et al. Electrical anisotropic structure in the quaternary volcanic region of North Hainan Island and its geological implications[J]. Earth Science, 2020, 45(1):330-340.
[23] Fischer G. Electromagnetic induction effects at an ocean coast[J]. Proceedings of the IEEE, 1979, 67(7):1050-1060.
[24] Mackie R L, Bennett B R, Madden T R. Long-period magnetotelluric measurements near the central California coast:A land-locked view of the conductivity structure under the Pacific Ocean[J]. Geophysical Journal International, 1988, 95(1):181-194.
[25] Key K. MARE2DEM:A 2-D inversion code for controlled-source electromagnetic and magnetotelluric data[J]. Geophysical Journal International, 2016, 207(1):571-588.
[26] Egbert G D, Kelbert A. Computational recipes for electromagnetic inverse problems[J]. Geophysical Journal International, 2012, 189(1):251-267.
[27] Kelbert A, Meqbel N, Egbert G D, et al. ModEM:A modular system for inversion of electromagnetic geophysical data[J]. Computers and Geosciences, 2014,66:40-53.
[28] Caldwell T G, Bibby H M, Brown C. The magnetotelluric phase tensor[J]. Geophysical Journal International, 2004, 158(2):457-469.
[29] Wiese H. Geomagnetische tiefentellurik teil II:Die streichrichtung der untergrundstrukturen des elektrischen widerstandes,erschlossen aus geomagnetischen variationen[J]. Geofisica Pura e Applicata, 1962, 52(1):83-103.
[1] 胡英才, 王瑞廷, 李貅. 激电效应对AMT正演的影响及其在砂岩型铀矿中的数值模拟[J]. 物探与化探, 2024, 48(4): 1006-1017.
[2] 张继伟, 谭慧. 可控源音频大地电磁和微动资料的拟二维联合反演[J]. 物探与化探, 2024, 48(4): 1094-1102.
[3] 韩术合, 裴秋明, 许健, 宋志勇, 莫海斌. 综合物探方法在内蒙古敖汉旗林家地地热资源勘查中的应用试验[J]. 物探与化探, 2024, 48(4): 962-970.
[4] 朱将波, 汪启年, 刘玉泉, 官大维, 李涛, 尤淼, 张健. 蚌埠—淮北地区电性结构及地质意义[J]. 物探与化探, 2024, 48(4): 971-978.
[5] 王文杰, 陈磊, 雷聪聪, 石晓峰, 杨彪, 王文宝, 孙大鹏, 徐浩清. 内蒙古额济纳旗东北部雅干断裂带深部构造特征分析——来自大地电磁的证据[J]. 物探与化探, 2024, 48(3): 640-650.
[6] 夏时斌, 廖国忠, 邓国仕, 杨剑, 李富. 高密度电法和音频大地电磁测深法在西南岩溶地区地下水勘探中的应用[J]. 物探与化探, 2024, 48(3): 651-659.
[7] 陈永凌, 蒋首进, 谢丹, 王嘉, 何志雄, 刘澄. 阿里地区日土县综合物探方法找水研究[J]. 物探与化探, 2024, 48(3): 668-674.
[8] 秦长春, 牛峥, 李婧. 可控源音频大地电磁法电阻率与阻抗相位双参数综合判定煤矿双层采空区[J]. 物探与化探, 2024, 48(3): 690-697.
[9] 陈兴朋, 王亮, 龙霞, 席振铢, 亓庆新, 薛军平, 戴云峰, 胡子君. CSRMT正交水平发射源电磁场分布规律研究[J]. 物探与化探, 2024, 48(3): 721-735.
[10] 姚禹, 张志厚. 基于改进DenseNet的大地电磁智能反演[J]. 物探与化探, 2024, 48(3): 759-767.
[11] 杨敏, 徐新强, 陈明, 纪晓琳, 王万银, 赵东明, 周巍, 张义蜜. 基于高精度重力勘探对地下空洞的探测研究[J]. 物探与化探, 2024, 48(3): 876-883.
[12] 何俊飞. 综合物探在新兴都斛铜矿床勘查中的应用[J]. 物探与化探, 2024, 48(2): 375-381.
[13] 杨凯, 刘诚, 贺景龙, 李含, 姚川. 基于人工神经网络的大地电磁时序分类研究[J]. 物探与化探, 2024, 48(2): 498-507.
[14] 郝社锋, 田少兵, 梅荣, 彭荣华, 李兆令. 高干扰矿集区大地电磁噪声抑制技术探索[J]. 物探与化探, 2024, 48(1): 162-174.
[15] 付兴, 谭捍东, 董岩, 汪茂. 基于监督下降法的大地电磁二维反演及应用研究[J]. 物探与化探, 2024, 48(1): 175-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com