Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (4): 1094-1102    DOI: 10.11720/wtyht.2024.1477
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
可控源音频大地电磁和微动资料的拟二维联合反演
张继伟(), 谭慧
香港中文大学(深圳) 城市地下空间及能源研究院,广东 深圳 518172
Quasi-two-dimensional joint inversion of the data from the controlled source audio-frequency magnetotellurics and the microtremor survey
ZHANG Ji-Wei(), TAN Hui
Institute of Urban Underground Space and Energy Studies, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
全文: PDF(4316 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

可控源音频大地电磁(CSAMT)和微动探测在城市强干扰条件下均有较好的应用前景,但单一的地球物理反演具有多解性。为了实现不同地球物理方法优势的互补,同时解决单点反演横向不连续性的问题,本文开展了CSAMT和微动探测数据的拟二维联合反演研究。作者将横向约束矩阵引入联合反演的目标函数中,同时采用有限内存拟牛顿反演算法(LBFGS),实现了两种方法的联合反演。通过理论模型合成数据反演算例,验证了联合反演的可靠性和有效性。结果表明,联合反演相比单一数据反演能有效地提高反演结果的准确度,其电阻率模型和横波速度结构更加趋于一致,同时,横向约束能有效地降低相邻测点物性参数的不连续性。通过加入横向约束的拟二维联合反演以单点反演的效率,获得了更合理的物性参数和地下结构的剖面结果,提高了反演的可靠性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张继伟
谭慧
关键词 联合反演可控源音频大地电磁法微动探测横向约束反演    
Abstract

Both the controlled source audio-frequency magnetotellurics (CSAMT) and the microtremor survey exhibit promising application prospectsunder strong urban interference. However,single geophysical inversion methods are challenged by a multiplicity of solutions. To achieve the complementary advantages of different geophysical methods, and address the lateral discontinuity of single-point inversion, this studyexplored the quasi-two-dimensional joint inversion of the CSAMTand microtremor survey data. It enabled the joint inversionby introducing a lateral constraint matrix into the objective function for joint inversion and employing the limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm. The reliability and effectiveness of the joint inversion were verified using the inversion example of synthetic data from theoretical models. The results show that compared to single data inversion, the joint inversion can effectively improve the accuracy of inversion results, with the resistivity model more consistent with theshear-wave velocity structure. Moreover,lateral constraints can effectively reduce the discontinuity of the physical parameters of adjacentsurvey points. The quasi-two-dimensional joint inversion with lateral constraints enhances the inversion reliability by obtaining more reasonable profile results of physical parameters and structures with the efficiency of single-point inversion.

Key wordsjoint inversion    controlled source audio-frequency magnetotellurics    microtremor survey    laterally constrained inversion
收稿日期: 2023-11-10      修回日期: 2023-12-29      出版日期: 2024-08-20
ZTFLH:  P631  
基金资助:云南省2023科技计划项目“云南省中深层地热能开发关键技术研究”(202302AF080001);可控源电磁和微动探测数据联合反演及其在北京市地热勘探中的应用(8192041)
作者简介: 张继伟(1995-),男,硕士研究生,主要从事电磁法正反演和微动探测方法技术研究工作。Email:1064010459@qq.com
引用本文:   
张继伟, 谭慧. 可控源音频大地电磁和微动资料的拟二维联合反演[J]. 物探与化探, 2024, 48(4): 1094-1102.
ZHANG Ji-Wei, TAN Hui. Quasi-two-dimensional joint inversion of the data from the controlled source audio-frequency magnetotellurics and the microtremor survey. Geophysical and Geochemical Exploration, 2024, 48(4): 1094-1102.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1477      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I4/1094
Fig.1  弹性介质层状模型
Fig.2  拟二维联合反演模型示意
Fig.3  倾斜三层模型反演结果
a—倾斜三层电阻率模型;b—倾斜三层速度模型;c—电阻率反演结果;d—横波速度反演结果;e—无约束联合反演电阻率结果;f—无约束联合反演横波速度结果;g—横向约束联合反演电阻率结果;h—横向约束联合反演横波速度结果
Fig.4  台阶三层模型反演结果
a—台阶三层电阻率模型;b—台阶三层速度模型;c—电阻率反演结果;d—横波速度反演结果;e—无约束联合反演电阻率结果;f—无约束联合反演横波速度结果;g—横向约束联合反演电阻率结果;h—横向约束联合反演横波速度结果
[1] 丁立锋, 徐佩芬, 凌苏群, 等. 微动勘探方法探测林南仓煤矿岩浆岩侵入体[J]. 煤炭科学技术, 2010, 38(7):100-103.
[1] Ding L F, Xu P F, Ling S Q, et al. Micro seismic exploration method applied to detect igneous magma intrusion in Linnancang Mine[J]. Coal Science and Technology, 2010, 38(7):100-103.
[2] 刘永勤, 廖远国, 李学专, 等. 微动探测技术在轨道交通工程勘察中的应用研究[J]. 工程勘察, 2010, 38(S1):1-11.
[2] Liu Y Q, Liao Y G, Li X Z, et al. The application study of microtremor survey technology in rail transport engineering survey[J]. Geotechnical Investigation & Surveying, 2010, 38(S1):1-11.
[3] 高艳华, 黄溯航, 刘丹, 等. 微动探测技术及其工程应用进展[J]. 科学技术与工程, 2018, 18(23):146-155.
[3] Gao Y H, Huang S H, Liu D, et al. Microtremor detection technology and its new progress in engineering application[J]. Science Technology and Engineering, 2018, 18(23):146-155.
[4] 底青云, 王若. 可控源音频大地电磁数据正反演及方法应用[M]. 北京: 科学出版社, 2008.
[4] Di Q Y, Wang R. Controlled source audio-frequency magneto tellurics[M]. Beijing: Science Press, 2008.
[5] 汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.
[5] Tang J T, He J S. Controlled source audio magnetotelluric method and its application[M]. Changsha: Central South University Press, 2005.
[6] 孙勇军, 徐佩芬, 凌甦群, 等. 微动勘查方法及其研究进展[J]. 地球物理学进展, 2009, 24(1):326-334.
[6] Sun Y J, Xu P F, Ling S Q, et al. Microtremor survey method and its progress[J]. Progress in Geophysics, 2009, 24(1):326-334.
[7] Toksöz M N, Lacoss R T. Microseisms:Mode structure and sources[J]. Science, 1968, 159(3817):872-873.
pmid: 17768976
[8] Vozoff K, Jupp D L B. Joint inversion of geophysical data[J]. Geophysical Journal of the Royal Astronomical Society, 2007, 42(3):977-991.
[9] 彭淼. 大地电磁与天然地震数据联合反演研究[D]. 北京: 中国地质大学(北京), 2012.
[9] Peng M. Joint inversion of magnetotelluric and teleseismic data[D]. Beijing: China University of Geosciences, 2012.
[10] 吴萍萍. 大地电磁和地震面波频散数据联合反演研究[D]. 北京: 中国地质大学(北京), 2019.
[10] Wu P P. Joint inversion of magnetotelluric and seismic surface wave dispersion datasets[D]. Beijing: China University of Geosciences, 2019.
[11] Gao G Z, Abubakar A, Habashy T M. Joint petrophysical inversion of electromagnetic and full-waveform seismic data[J]. Geophysics, 2012, 77(3),3-18.
[12] 周丽芬. 大地电磁与地震数据二维联合反演研究[D]. 北京: 中国地质大学(北京), 2012.
[12] Zhou L F. Two dimensional joint inversion of MT and seismic data[D]. Beijing: China University of Geosciences, 2012.
[13] Moorkamp M, Roberts A W, Jegen M, et al. Verification of velocity-resistivity relationships derived from structural joint inversion with borehole data[J]. Geophysical Research Letters, 2013, 40(14):3596-3601.
[14] 李桐林, 张镕哲, 朴英哲. 大地电磁测深与地震初至波走时交叉梯度反演[J]. 吉林大学学报:地球科学版, 2015, 45(3):952-961.
[14] Li T L, Zhang R Z, Pak Y Z. Joint inversion of magnetotelluric and first-arrival wave seismic traveltime with cross-gradient constraints[J]. Journal of Jilin University:Earth Science Edition, 2015, 45(3):952-961.
[15] Auken E, Christiansen A V. Layered and laterally constrained 2D inversion of resistivity data[J]. Geophysics, 2004, 69(3):752-761.
[16] 王颖. 磁共振与瞬变电磁横向约束联合反演方法研究[D]. 长春: 吉林大学, 2016.
[16] Wang Y. Study on joint and laterally constrained inversion of MRS and TEM data[D]. Changchun: Jilin University, 2016.
[17] Auken E, Thomsen P, Sørensen K. Lateral constrained inversion (LCI) of profile oriented data - The resistivity case[C]// Bochum:Proceedings of 6th EAGE/EEGS Meeting, 2000, EL06:124-142.
[18] Monteiro Santos F A. 1-D laterally constrained inversion of EM34 profiling data[J]. Journal of Applied Geophysics, 2004, 56(2):123-134.
[19] Auken E, Christiansen A V, Jacobsen L, et al. Laterally constrained 1D:Inversion of 3D TEM data[C]// Symposium on the Application of Geophysics to Engineering and Environmental Problems, 2005:514-518.
[20] Siemon B, Auken E, Christiansen A V. Laterally constrained inversion of helicopter-borne frequency-domain electromagnetic data[J]. Journal of Applied Geophysics, 2009, 67(3):259-268.
[21] 蔡晶, 齐彦福, 殷长春. 频率域航空电磁数据的加权横向约束反演[J]. 地球物理学报, 2014, 57(3):953-960.
[21] Cai J, Qi Y F, Yin C C. Weighted Laterally-constrained inversion of frequency-domain airborne EM data[J]. Chinese Journal of Geophysics, 2014, 57(3):953-960.
[22] 殷长春, 邱长凯, 刘云鹤, 等. 时间域航空电磁数据加权横向约束反演[J]. 吉林大学学报:地球科学版, 2016, 46(1):254-261.
[22] Yin C C, Qiu C K, Liu Y H, et al. Weighted laterally-constrained inversion of time-domain airborne electromagnetic data[J]. Journal of Jilin University:Earth Science Edition, 2016, 46(1):254-261.
[23] 考夫曼, 凯勒. 频率域和时间域电磁测深[M].王建谋,译. 北京: 地质出版社, 1987.
[23] Kaufman A A, Keller G V. Frequency and time domain electromagnetic sounding[M]. Wang J M,translate. Beijing: Geological Publishing House, 1987.
[24] Schwab F, Knopoff L. Surface-wave dispersion computations[J]. Bulletin of the Seismological Society of America, 1970, 60(2):321-344.
[25] Egbert G D, Kelbert A. Computational recipes for electromagnetic inverse problems[J]. Geophysical Journal International, 2012, 189(1):251-267.
[26] Jackson D D. The use of a priori data to resolve non-uniqueness in linear inversion[J]. Geophysical Journal International, 1979, 57(1):137-157.
[27] 桂兵. 可控源音频大地电磁法张量数据二维反演研究[D]. 北京: 中国地质大学(北京), 2015.
[27] Gui B. Research of 2D CSAMT tensor data inversion[D]. Beijing: China University of Geosciences, 2015.
[28] 方洪健. 地震体波面波联合反演研究及应用[D]. 合肥: 中国科学技术大学, 2017.
[28] Fang H J. Joint inversion of seismic body and surface wave data:Methods and applications[D]. Hefei: University of Science and Technology of China, 2017.
[29] 宓彬彬. 复杂浅地表弹性介质面波分析方法研究[D]. 武汉: 中国地质大学, 2018.
[29] Mi B B. Surface-wave analysis in complicated near-surface elastic media[D]. Wuhan: China University of Geosciences, 2018.
[1] 韩术合, 裴秋明, 许健, 宋志勇, 莫海斌. 综合物探方法在内蒙古敖汉旗林家地地热资源勘查中的应用试验[J]. 物探与化探, 2024, 48(4): 962-970.
[2] 秦长春, 牛峥, 李婧. 可控源音频大地电磁法电阻率与阻抗相位双参数综合判定煤矿双层采空区[J]. 物探与化探, 2024, 48(3): 690-697.
[3] 董健, 李肖鹏, 付超, 党智财, 赵晓博, 曾庆斌, 胡雪平, 王金辉. 高精度重磁方法寻找隐伏矽卡岩型铁矿[J]. 物探与化探, 2024, 48(1): 31-39.
[4] 孔繁祥, 谭捍东, 刘建勋. 海洋可控源电磁法与地震全波形二维联合反演研究[J]. 物探与化探, 2024, 48(1): 67-76.
[5] 连晟, 程正璞, 罗旋, 李敬杰, 田蒲源. 基于岩石物性引导的地球物理联合反演研究[J]. 物探与化探, 2023, 47(6): 1580-1587.
[6] 陈晓, 曾志文, 邓居智, 张志勇, 陈辉, 余辉, 王彦国. 基于不等式和Gramian约束的MT和重力正则化联合反演[J]. 物探与化探, 2023, 47(3): 575-583.
[7] 王军成, 赵振国, 高士银, 罗传根, 李琳, 徐明钻, 李勇, 袁国境. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2): 321-330.
[8] 李巧灵, 张辉, 雷晓东, 李晨, 房浩, 关伟, 韩宇达, 赵旭辰. 综合利用多道瞬态面波和微动探测分析斜坡内部结构[J]. 物探与化探, 2022, 46(1): 258-267.
[9] 李帝铨, 肖教育, 张继峰, 胡艳芳, 刘最亮, 张新. WFEM与CSAMT在新元煤矿富水区探测效果对比[J]. 物探与化探, 2021, 45(5): 1359-1366.
[10] 程云涛, 刘俊峰, 曹创华, 王荡. 衡阳盆地西北缘物化探特征及其找矿意义[J]. 物探与化探, 2021, 45(5): 1189-1195.
[11] 余永鹏, 闫照涛, 毛兴军, 杨彦成, 马永祥, 黄鹏程, 陆爱国, 张广兵. 巨厚新生界覆盖区煤炭勘查中的电震综合方法应用[J]. 物探与化探, 2021, 45(5): 1231-1238.
[12] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[13] 艾正敏, 叶益信, 汤文武, 陈晓, 杜家明. 基于非结构三角网格的海洋CSEM和MT二维联合反演研究[J]. 物探与化探, 2021, 45(1): 149-158.
[14] 徐云霞, 文鹏飞, 张宝金, 刘斌. OBS在琼东南海域水合物矿体识别中的应用[J]. 物探与化探, 2020, 44(6): 1276-1282.
[15] 章惠, 隋少强, 钱烙然, 汪新伟. 多种非震方法在山东齐河地热勘查中的应用[J]. 物探与化探, 2020, 44(4): 727-733.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com