Both the controlled source audio-frequency magnetotellurics (CSAMT) and the microtremor survey exhibit promising application prospectsunder strong urban interference. However,single geophysical inversion methods are challenged by a multiplicity of solutions. To achieve the complementary advantages of different geophysical methods, and address the lateral discontinuity of single-point inversion, this studyexplored the quasi-two-dimensional joint inversion of the CSAMTand microtremor survey data. It enabled the joint inversionby introducing a lateral constraint matrix into the objective function for joint inversion and employing the limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm. The reliability and effectiveness of the joint inversion were verified using the inversion example of synthetic data from theoretical models. The results show that compared to single data inversion, the joint inversion can effectively improve the accuracy of inversion results, with the resistivity model more consistent with theshear-wave velocity structure. Moreover,lateral constraints can effectively reduce the discontinuity of the physical parameters of adjacentsurvey points. The quasi-two-dimensional joint inversion with lateral constraints enhances the inversion reliability by obtaining more reasonable profile results of physical parameters and structures with the efficiency of single-point inversion.
张继伟, 谭慧. 可控源音频大地电磁和微动资料的拟二维联合反演[J]. 物探与化探, 2024, 48(4): 1094-1102.
ZHANG Ji-Wei, TAN Hui. Quasi-two-dimensional joint inversion of the data from the controlled source audio-frequency magnetotellurics and the microtremor survey. Geophysical and Geochemical Exploration, 2024, 48(4): 1094-1102.
Ding L F, Xu P F, Ling S Q, et al. Micro seismic exploration method applied to detect igneous magma intrusion in Linnancang Mine[J]. Coal Science and Technology, 2010, 38(7):100-103.
Liu Y Q, Liao Y G, Li X Z, et al. The application study of microtremor survey technology in rail transport engineering survey[J]. Geotechnical Investigation & Surveying, 2010, 38(S1):1-11.
Gao Y H, Huang S H, Liu D, et al. Microtremor detection technology and its new progress in engineering application[J]. Science Technology and Engineering, 2018, 18(23):146-155.
[4]
底青云, 王若. 可控源音频大地电磁数据正反演及方法应用[M]. 北京: 科学出版社, 2008.
[4]
Di Q Y, Wang R. Controlled source audio-frequency magneto tellurics[M]. Beijing: Science Press, 2008.
[5]
汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.
[5]
Tang J T, He J S. Controlled source audio magnetotelluric method and its application[M]. Changsha: Central South University Press, 2005.
Wu P P. Joint inversion of magnetotelluric and seismic surface wave dispersion datasets[D]. Beijing: China University of Geosciences, 2019.
[11]
Gao G Z, Abubakar A, Habashy T M. Joint petrophysical inversion of electromagnetic and full-waveform seismic data[J]. Geophysics, 2012, 77(3),3-18.
[12]
周丽芬. 大地电磁与地震数据二维联合反演研究[D]. 北京: 中国地质大学(北京), 2012.
[12]
Zhou L F. Two dimensional joint inversion of MT and seismic data[D]. Beijing: China University of Geosciences, 2012.
[13]
Moorkamp M, Roberts A W, Jegen M, et al. Verification of velocity-resistivity relationships derived from structural joint inversion with borehole data[J]. Geophysical Research Letters, 2013, 40(14):3596-3601.
Li T L, Zhang R Z, Pak Y Z. Joint inversion of magnetotelluric and first-arrival wave seismic traveltime with cross-gradient constraints[J]. Journal of Jilin University:Earth Science Edition, 2015, 45(3):952-961.
[15]
Auken E, Christiansen A V. Layered and laterally constrained 2D inversion of resistivity data[J]. Geophysics, 2004, 69(3):752-761.
[16]
王颖. 磁共振与瞬变电磁横向约束联合反演方法研究[D]. 长春: 吉林大学, 2016.
[16]
Wang Y. Study on joint and laterally constrained inversion of MRS and TEM data[D]. Changchun: Jilin University, 2016.
[17]
Auken E, Thomsen P, Sørensen K. Lateral constrained inversion (LCI) of profile oriented data - The resistivity case[C]// Bochum:Proceedings of 6th EAGE/EEGS Meeting, 2000, EL06:124-142.
[18]
Monteiro Santos F A. 1-D laterally constrained inversion of EM34 profiling data[J]. Journal of Applied Geophysics, 2004, 56(2):123-134.
[19]
Auken E, Christiansen A V, Jacobsen L, et al. Laterally constrained 1D:Inversion of 3D TEM data[C]// Symposium on the Application of Geophysics to Engineering and Environmental Problems, 2005:514-518.
[20]
Siemon B, Auken E, Christiansen A V. Laterally constrained inversion of helicopter-borne frequency-domain electromagnetic data[J]. Journal of Applied Geophysics, 2009, 67(3):259-268.
Cai J, Qi Y F, Yin C C. Weighted Laterally-constrained inversion of frequency-domain airborne EM data[J]. Chinese Journal of Geophysics, 2014, 57(3):953-960.
Yin C C, Qiu C K, Liu Y H, et al. Weighted laterally-constrained inversion of time-domain airborne electromagnetic data[J]. Journal of Jilin University:Earth Science Edition, 2016, 46(1):254-261.
[23]
考夫曼, 凯勒. 频率域和时间域电磁测深[M].王建谋,译. 北京: 地质出版社, 1987.
[23]
Kaufman A A, Keller G V. Frequency and time domain electromagnetic sounding[M]. Wang J M,translate. Beijing: Geological Publishing House, 1987.
[24]
Schwab F, Knopoff L. Surface-wave dispersion computations[J]. Bulletin of the Seismological Society of America, 1970, 60(2):321-344.
[25]
Egbert G D, Kelbert A. Computational recipes for electromagnetic inverse problems[J]. Geophysical Journal International, 2012, 189(1):251-267.
[26]
Jackson D D. The use of a priori data to resolve non-uniqueness in linear inversion[J]. Geophysical Journal International, 1979, 57(1):137-157.
Gui B. Research of 2D CSAMT tensor data inversion[D]. Beijing: China University of Geosciences, 2015.
[28]
方洪健. 地震体波面波联合反演研究及应用[D]. 合肥: 中国科学技术大学, 2017.
[28]
Fang H J. Joint inversion of seismic body and surface wave data:Methods and applications[D]. Hefei: University of Science and Technology of China, 2017.
[29]
宓彬彬. 复杂浅地表弹性介质面波分析方法研究[D]. 武汉: 中国地质大学, 2018.
[29]
Mi B B. Surface-wave analysis in complicated near-surface elastic media[D]. Wuhan: China University of Geosciences, 2018.