Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (3): 721-735    DOI: 10.11720/wtyht.2024.1395
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
CSRMT正交水平发射源电磁场分布规律研究
陈兴朋1(), 王亮1(), 龙霞1, 席振铢2, 亓庆新1, 薛军平1, 戴云峰3, 胡子君4
1.湖南五维地质科技有限公司,湖南 长沙 410205
2.中南大学 地球科学与信息物理学院,湖南 长沙 410083
3.南京水利科学研究院 水文水资源与水利工程科学国家重点实验室,江苏 南京 210029
4.湖南女子学院 信息科学与工程学院,湖南 长沙 410004
Distribution patterns of the electromagnetic fields of orthogonal horizontal magnetic dipoles as sources in CSRMT
CHEN Xing-Peng1(), WANG Liang1(), LONG Xia1, XI Zhen-Zhu2, QI Qing-Xin1, XUE Jun-Ping1, DAI Yun-Feng3, HU Zi-Jun4
1. Hunan 5D Geosciences Co. Ltd., Changsha 410205, China
2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
3. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
4. School of Information Science and Engineering, Hunan Women's University, Changsha 410004, China
全文: PDF(7800 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

可控源射频大地电磁法(controlled source radio-magnetotellurics,CSRMT)测量通常使用发送频率1~1 000 kHz的人工场源,正交水平电偶源和正交水平磁偶源是人工源电磁法众多发射源中实现张量电阻率测量的优质场源。为此,本文基于水平电偶极子源和水平磁偶极子源电磁场解析公式,计算了均匀半空间模型正交水平电偶极子源和正交水平磁偶极子源的电磁场。结果表明,发射频率大于100 kHz时,应考虑位移电流;而张量视电阻率和阻抗相位在远区可以忽略位移电流的影响;固定模型电阻率、改变收发距时,模型计算表明高频电磁场远区测量范围更大;固定收发距、改变模型电阻率时,模型计算表明电磁场远区范围受电阻率影响较大,高阻模型需要更高的频率才会出现远区观测条件。磁偶源相较于电偶源,在张量视电阻率和相位上与实际值的偏差更小,更适于地质分析。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈兴朋
王亮
龙霞
席振铢
亓庆新
薛军平
戴云峰
胡子君
关键词 可控源射频大地电磁法正交水平电偶源正交水平磁偶源位移电流阻抗    
Abstract

Controlled source radio-magnetotellurics (CSRMT) measurements typically use artificial field sources transmitting at frequencies ranging from 1 to 1 000 kHz. Among the many transmitting sources of the artificial source electromagnetic method, the orthogonal horizontal electric dipole source and the orthogonal horizontal magnetic dipole source are preferred field sources for tensor resistivity measurements. Hence, using the analytical formulas for electromagnetic fields based on the horizontal electric dipole source and the horizontal magnetic dipole source, this study calculated the electromagnetic fields based on the orthogonal horizontal electric dipole source and the orthogonal horizontal magnetic dipole source in the homogeneous half-space model. The results show that: (1) The displacement current needs to be considered at transmitting frequencies above 100 kHz; (2) The effects of displacement current on the tensor apparent resistivity and the impedance phase can be ignored in the far zone; (3) With a constant model resistivity and varying distances between transmitter and receiver, model calculations indicate a larger measurement range in the far zone of the high-frequency electromagnetic field; (4) With a constant distance between transmitter and receiver and varying model resistivities, model calculations suggest that the far-zone range of the electromagnetic field is significantly influenced by resistivity, and that the high-resistivity model requires higher frequencies for achieving far-zone observation conditions.Compared with the electric dipole source, the magnetic dipole source exhibits smaller deviations on the tensor apparent resistivity and impedance phase with the actual value, which is more suitable for geological analysis.

Key wordscontrolled source radio-magnetotellurics (CSRMT)    orthogonal horizontal electric dipole source    orthogonal horizontal magnetic dipole source    displacement current    impedance
收稿日期: 2023-09-15      修回日期: 2023-12-29      出版日期: 2024-06-20
ZTFLH:  P631  
基金资助:国家重点研发计划课题(2022YFC2903404);国家重点研发计划课题(2022YFC2900002)
通讯作者: 王亮(1989-),男,2013年硕士毕业于中南大学,从事电磁法勘探正反演算法与可视化软件的研究与应用。Email:leftwillow@163.com
作者简介: 陈兴朋(1986-),男,2012年硕士毕业于中南大学,从事电磁法仪器的开发与应用研究。Email:bantianfeng@foxmail.com
引用本文:   
陈兴朋, 王亮, 龙霞, 席振铢, 亓庆新, 薛军平, 戴云峰, 胡子君. CSRMT正交水平发射源电磁场分布规律研究[J]. 物探与化探, 2024, 48(3): 721-735.
CHEN Xing-Peng, WANG Liang, LONG Xia, XI Zhen-Zhu, QI Qing-Xin, XUE Jun-Ping, DAI Yun-Feng, HU Zi-Jun. Distribution patterns of the electromagnetic fields of orthogonal horizontal magnetic dipoles as sources in CSRMT. Geophysical and Geochemical Exploration, 2024, 48(3): 721-735.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1395      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I3/721
Fig.1  正交水平电/磁偶源在区域1产生电磁场示意图
Fig.2  10 kHz水平正交电偶源的电磁场水平分量振幅空间分布示意图
Fig.3  100 kHz水平正交电偶源的电磁场水平分量振幅空间分布示意图
Fig.4  10 kHz水平正交磁偶源的电磁场水平分量振幅空间分布示意图
Fig.5  100 kHz水平正交磁偶源的电磁场水平分量振幅空间分布示意图
Fig.6  CSRMT视电阻率和阻抗相位计算模型
Fig.7  100 kHz正交水平电偶源的张量视电阻率和相位空间分布
a—x方向的视电阻率空间分布;b—y方向的视电阻率空间分布;c—x方向的相位空间分布;d—y方向的相位空间分布
Fig.8  100 kHz正交水平磁偶源的张量视电阻率和相位空间分布
a—x方向的视电阻率空间分布;b—y方向的视电阻率空间分布;c—x方向的相位空间分布;d—y方向的相位空间分布
Fig.9  不同收发距下正交水平电偶源(a)和磁偶源(b)忽略与包含位移电流的张量视电阻率和阻抗相位误差
Fig.10  收发距变化对正交水平电偶源和磁偶源张量视电阻率和相位的影响
a—发送频率10 kHz 对电阻率的影响;b—发送频率10 kHz 对相位的影响;c—发送频率100 kHz对电阻率的影响;d—发送频率100 kHz对相位的影响;e—发送频率1 000 kHz对电阻率的影响;f—发送频率1 000 kHz对相位的影响
Fig.11  不同背景电阻率在正交水平电偶源和磁偶源激励下张量视电阻率和相位随频率的变化
a—背景电阻率为10 Ω·m的视电阻率变化;b—背景电阻率为10 Ω·m的相位变化;c—背景电阻率为100 Ω·m的视电阻率变化;d—背景电阻率为100 Ω·m的相位变化;e—背景电阻率为1 000 Ω·m的视电阻率变化;f—背景电阻率为1 000 Ω·m的相位变化
[1] 刘钟尹, 陈小斌, 王培杰, 等. 可控射频大地电磁法的野外观测实验和数据处理新技术[C]// 2021年中国地球科学联合学术年会论文集(七), 2021.
[1] Liu Z Y, Chen X B, Wang P J, et al. Field observation experiments and new data processing technologies for controlled source radio-frequency magnetotellurics[C]// Proceedings of the 2021 China Earth Sciences Joint Academic Annual Conference (Ⅶ),2021.
[2] Bastani M. EnviroMT: A new controlled source/radio magnetotoelluric system[M]. Uppsala: Uppsala Dissertations from the Faculty of Science and Technology, 2001.
[3] Bastani M, Savvaidis A, Pedersen L B, et al. CSRMT measurements in the frequency range of 1-250 kHz to map a normal fault in the Volvi Basin,Greece[J]. Journal of Applied Geophysics, 2011, 75(2):180-195.
[4] Muttaqien I. Controlled source radiomagnetotelluric method applications in near surface geophysics[D]. Köln: Universitat zu Köln, 2018.
[5] 汤井田, 任政勇, 周聪, 等. 浅部频率域电磁勘探方法综述[J]. 地球物理学报, 2015, 58(8):2681-2705.
doi: 10.6038/cjg20150807
[5] Tang J T, Ren Z Y, Zhou C, et al. Frequency-domain electromagnetic methods for exploration of the shallow subsurface:A review[J]. Chinese Journal of Geophysics, 2015, 58(8):2681-2705.
[6] 徐永锋. 可控源射频大地电磁(CSRMT)系统发射机技术研究[D]. 北京: 中国科学院大学, 2014.
[6] Xu Y F. Research on transmitter technology of controlled source radio frequency magnetotelluric (CSRMT) system[D]. Beijing: University of Chinese Academy of Sciences, 2014.
[7] 何继善. 可控源音频大地电磁法[M]. 长沙: 中南工业大学出版社,1990.
[7] He J S. Controlled source audio-frequency magnetotellurics[M]. Changsha: Central South University of Technology Press,1990.
[8] 汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.
[8] Tang J T, He J S. Controlled source audio magnetotelluric method and its application[M]. Changsha: Central South University Press, 2005.
[9] 陈乐寿, 王光锷. 大地电磁测深法[M]. 北京: 地质出版社,1990.
[9] Chen L S, Wang G E. Magnetotelluric sounding method[M]. Beijing: Geological Publishing House,1990.
[10] 周亚东. CSAMT多偶极子源特征与张量测量研究[D]. 成都: 成都理工大学, 2015.
[10] Zhou Y D. Characteristics of multiple source and study on tensor measurement in CSAMT[D]. Chengdu: Chengdu University of Technology, 2015.
[11] Saraev A K, Shlykov A A, Bobrov N Y. Tensor CSRMT system with horizontal electrical dipole sources and prospects of its application in Arctic permafrost regions[J]. Eng, 2023, 4(1):569-580.
[12] Bastani M, Malehmir A, Savvaidis A. Combined use of controlled-source and radio-magnetotelluric methods for near surface studies[C]// 24th International Geophysical Conference and Exhibition, 2015.
[13] Bastani M, Pedersen L B. Estimation of magnetotelluric transfer functions from radio transmitters[J]. Geophysics, 2001, 66(4):1038-1051.
[14] Bastani M, Persson L, Mehta S, et al. Boat-towed radio-magnetotellurics—A new technique and case study from the city of Stockholm[J]. Geophysics, 2015, 80(6):B193-B202.
[15] Tezkan B, Saraev A. A new broadband radiomagnetotelluric instrument:Applications to near surface investigations[J]. Near Surface Geophysics, 2008, 6(4):245-252.
[16] Simakov A, Saraev A, Antonov N, et al. Mobile and controlled source modifications of the radiomagnetotelluric method and prospects of their applications in the near-surface geophysics[C] // 20th Working Group 1.2 of the International Association of Geomagnetism and Aeronomy (IAGA) Workshop on Electromagnetic Induction in the Earth, 2010.
[17] Pedersen L B, Bastani M, Dynesius L. Groundwater exploration using combined controlled-source and radiomagnetotelluric techniques[J]. Geophysics, 2005, 70(1):G8-G15.
[18] Bastani M, Malehmir A, Ismail N, et al. Delineating hydrothermal stockwork copper deposits using controlled-source and radio-magnetotelluric methods:A case study from northeast Iran[J]. Geophysics, 2009, 74(5):B167-B181.
[19] Ismail N, Schwarz G, Pedersen L B. Investigation of groundwater resources using controlled-source radio magnetotellurics (CSRMT) in glacial deposits in Heby,Sweden[J]. Journal of Applied Geophysics, 2011, 73(1):74-83.
[20] Shlykov A, Antashchuk K, Saraev A, et al. Applications of the controlled-source radiomagnetotelluric method in near-surface investigations[C]// 9th Congress of the Balkan Geophysical Society, 2017.
[21] Saraev A, Shlykov A, Tezkan B. Technique and near-surface application of the controlled source radiomagnetotellurics with a horizontal electric dipole[C]// 24th European Meeting of Environmental and Engineering Geophysics, 2018.
[22] Tezkan B, Georgescu P, Fauzi U. A radiomagnetotelluric survey on an oil-contaminated area near the Brazi Refinery,Romania[J]. Geophysical Prospecting, 2005, 53(3):311-323.
[23] Tezkan B, Hördt A, Gobashy M. Two-dimensional radiomagnetotelluric investigation of industrial and domestic waste sites in Germany[J]. Journal of Applied Geophysics, 2000, 44(2-3):237-256.
[24] Bastani M, Wang S G, Malehmir A, et al. Radio-magnetotelluric and controlled-source magnetotelluric surveys on a frozen lake:Opportunities for urban applications in Nordic countries[J]. Near Surface Geophysics, 2022, 20(1):30-45.
[25] Simakov A E, Saraev A K. Application of the controlled-source RMT method for the solution of engineering tasks in chukotka region[C]// Near Surface 2011—17th EAGE European Meeting of Environmental and Engineering Geophysics, 2011.
[26] Asghari F S, Smirnova M, Shlykov A, et al. A controlled-source radio-magnetotelluric experiment in Aleksandrovka,Russia[C]// 28th Schmucker-Weidelt-Kolloquium für Elektro-magnetische Tiefenforschung, 2019.
[27] Asghari F S, Smirnova M, Shlykov A, et al. 2D/3D interpretation of controlled-source radio-magnetotelluric far field data from Aleksandrovka,Russia[C]//29th Schmucker-Weidelt Kolloquium für Elektromagnetische Tiefenforschung,2021.
[28] 席振铢, 徐培渊, 龙霞, 等. 正交水平磁偶源的电磁场分布规律[J]. 地球物理学报, 2011, 54(6):1642-1648.
[28] Xi Z Z, Xu P Y, Long X, et al. The electromagnetic field distribution generated from the orthogonal horizontal magnetic dipole source[J]. Chinese Journal of Geophysics, 2011, 54(6):1642-1648.
[29] 席振铢. 人工源频率倾子测深法[D]. 长沙: 中南大学, 2013.
[29] Xi Z Z. Artificial source frequency-tripper sounding method[D]. Changsha: Central South University, 2013.
[30] Shlykov A A, Saraev A K. Wave effects in the field of a high-frequency horizontal electric dipole[J]. Izvestiya,Physics of the Solid Earth, 2014, 50(2):249-262.
[31] Nabighian M N. Electromagnetic methods in applied geophysics[M]. Houston: Society of Exploration Geophysicists,1988.
[32] King R W P, Owens M, Wu T T. Lateral electromagnetic waves[M]. New York: Springer New York,1992.
[33] 袁翊. 超低频和极低频电磁波的传播及噪声[M]. 北京: 国防工业出版社, 2011.
[33] Yuan Y. Propagation and noise of SLF and ELF electromagnetic waves[M]. Beijing: National Defense Industry Press, 2011.
[34] 姚年鹏, 侯文豪, 张其林, 等. 地面电导率,地球曲率和电离层对远距离闪电定位的影响[J]. 电瓷避雷器, 2022(2):31-38.
[34] Yao N P, Hou W H, Zhang Q L, et al. Influences of ground conductivity,Earth curvature and ionosphere on long-distance lightning locating[J]. Insulators and Surge Arresters, 2022(2):31-38.
[35] Key K. Is the fast Hankel transform faster than quadrature?[J]. Geophysics, 2012, 77(3):F21.
[1] 秦长春, 牛峥, 李婧. 可控源音频大地电磁法电阻率与阻抗相位双参数综合判定煤矿双层采空区[J]. 物探与化探, 2024, 48(3): 690-697.
[2] 何贤科, 娄敏, 李炳颖, 刘江, 胡伟, 蔡华. Z气田深层储集层地球物理预测[J]. 物探与化探, 2024, 48(3): 609-617.
[3] 李路路, 姜国宇, 刘涛, 何岩, 张永波. 准噶尔盆地石南地区白垩系储层地球物理方法识别[J]. 物探与化探, 2024, 48(2): 334-341.
[4] 史全党, 孔令业, 吴超, 丁艳雪, 刘泽民, 于雪, 王江. 基于小波边缘分析与井—震联合建模的波阻抗反演技术在陆梁隆起带储层预测中的应用[J]. 物探与化探, 2023, 47(6): 1425-1432.
[5] 王康, 刘彩云, 熊杰, 王永昌, 胡焕发, 康佳帅. 基于全卷积残差收缩网络的地震波阻抗反演[J]. 物探与化探, 2023, 47(6): 1538-1546.
[6] 邢文军, 曹思远, 陈思远, 孙耀光. 基于谱反演方法的叠后纵波阻抗反演[J]. 物探与化探, 2023, 47(2): 429-437.
[7] 朱剑兵, 高照奇, 田亚军, 梁兴城. 带有横向约束的全局优化波阻抗反演方法及应用[J]. 物探与化探, 2022, 46(6): 1477-1484.
[8] 何帅, 杨炳南, 阮帅, 李永刚, 韩姚飞, 朱大伟. 三维AMT正反演技术对贵州马坪含金刚石岩体探测的精细解释[J]. 物探与化探, 2022, 46(3): 618-627.
[9] 肖张波, 雷永昌, 于骏清, 吴琼玲, 杨超群. 基于宽频资料的扩展弹性阻抗反演方法在陆丰22洼陷低勘探区古近系岩性预测中的应用[J]. 物探与化探, 2022, 46(2): 392-401.
[10] 梁立锋, 刘秀娟, 张宏兵, 陈程浩, 陈锦华. 超参数对GRU-CNN混合深度学习弹性阻抗反演影响研究[J]. 物探与化探, 2021, 45(1): 133-139.
[11] 郝亚炬, 高君. 基追踪弹性阻抗反演识别含气砂岩[J]. 物探与化探, 2020, 44(6): 1329-1335.
[12] 王海立, 王永生, 王彪, 马立新, 张先建. 基于强波阻抗反射界面的静校正方法及应用[J]. 物探与化探, 2018, 42(2): 347-351.
[13] 张刚, 庹先国, 王绪本, 李怀良. 级联分样与分频段功率谱计算的大地电磁张量阻抗估算对比[J]. 物探与化探, 2018, 42(1): 185-191.
[14] 王凯, 陈德元, 张凯, 岳航羽, 张保卫, 王小江. 青海木里地区陆域天然气水合物地震波阻抗特征研究[J]. 物探与化探, 2017, 41(6): 1105-1112.
[15] 万晓明, 梁劲, 梁金强, 林霖, 沙志彬, 柴祎, 蔡振华. 叠后波阻抗无井反演技术在T研究区天然气水合物分布预测中的应用[J]. 物探与化探, 2016, 40(3): 438-444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com